Math, asked by Singh7071360001, 3 months ago

Q: Evaluate the integral using contour integration . Full Solution please ​

Attachments:

Answers

Answered by Anonymous
1

Consider,

{\displaystyle I =\int_0^{2\pi}\dfrac{\cos(2\theta)}{5 + 4\cos(\theta)}\ d\theta = \int_0^{2\pi}\dfrac{\cos^2(\theta) - 1}{5 + 4\cos(\theta)}\ d\theta}

{\text{Let $z = e^{i\theta}$ so that $dz = ie^{i\theta} d\theta \implies \dfrac{dz}{iz} = {d\theta}$}}

Thus we have,

{\displaystyle \int_0^{2\pi}\dfrac{\cos^2(\theta) - 1}{5 + 4\cos(\theta)}\ d\theta = \oint_C\dfrac{\left\{\frac12\left(z + \frac1z\right)\right\}^2 - 1}{5 + 4\left\{\frac12\left(z + \frac1z\right)\right\} }\ \dfrac{dz}{iz} $ where $ C: |z| = 1}

Simplifying the above contour,

{\displaystyle\oint_C\dfrac{\left\{\frac12\left(z + \frac1z\right)\right\}^2 - 1}{5 + 4\left\{\frac12\left(z + \frac1z\right)\right\} }\ \dfrac{dz}{iz} }

\displaystyle=\oint_C\dfrac{\frac14\left(z^2 + \frac1{z^2} + 2\right) - 1}{5 +2\left(z + \frac1z\right) }\ \dfrac{dz}{iz}

\displaystyle= \boxed{\oint_C\dfrac{1 + z^4}{2i z^2(2z^2 + 5z + 2)}dz}

Let's assume that,

F(z)  = \dfrac{1 + z^4}{2i z^2(2z^2 + 5z + 2)}

It's poles are given by,

2i z^2(2z^2 + 5z + 2) = 0 \implies z = 0, 0, -2 , \dfrac{-1}{2}

It has simple poles at z = -\dfrac12, -2 and pole of order 2 at z=0 of which z = -\dfrac12 and  z = 0 lies inside C.

If z = a is a pole of order m, then

\boxed{\displaystyle\text{Res$_{z = m}f(x) =\dfrac{1}{(m-1)!}\lim_{z\to a}\left\{\dfrac{d^{m-1}}{dz^{m-1}} (z-a)^m \cdot f(z)\right\} $}}

For z = 0, residue is: \dfrac{-5}{8i}

For z = -1/2, residue is: \dfrac{17}{24i}

Using cauchy's theorem we have:
\displaystyle \oint_C\dfrac{1 + z^4}{2i z^2(2z^2 + 5z + 2)}dz =2\pi i (\sum Re F(z)) = 2\pi i \left(\dfrac{17}{24i} - \dfrac{5}{8i} \right) = \dfrac{\pi}{6}

Thus the given integral simplifies to pi/6.

Similar questions