Math, asked by tusharpandey7685, 10 months ago

Q. Find variance and S.D. for the following set
of numbers.

65, 77, 81, 98, 100, 80, 129​

Answers

Answered by muthu200804
1

Answer:want does SD means

Step-by-step explanation:

Answered by ashishks1912
2

The variance is s^2=443.33 and standard deviation is s=21.05

Step-by-step explanation:

Given set of numbers are  65, 77, 81, 98, 100, 80, 129​

To find the variance and standard deviation :

First find the \overline{X}

Mean=\frac{65+77+81+98+100+80+129​}{7}

=\frac{630}{7}

=90

Therefore Mean=\overline{X}=90

x          x-\overline{X}                                (x-\overline{X})^2

_____________________________

65       65-90=-25                                  625

77        77-90=-13                                    169

81         81-90=-9                                       81

98        98-90=8                                       64

100       100-90=10                                  100

80         80-90=-10                                  100

129        129-90=39                                1521

____________________________________________

                                                      \sum (x-\overline{X})^2=2660

_________________________________________________

We know that the formula for variance is

s^2=\frac{\sum (x-\overline{X})^2}{n-1}

  • Here n=7 and substitute the values in the formula we have that
  • s^2=\frac{2660}{7-1}
  • s^2=\frac{2660}{6}
  • =443.33

Therefore variance is s^2=443.33

Now standard deviation is

s=\sqrt{\frac{\sum (x-\overline{X})^2}{n-1}}

  • Substitute the value of s^2=443.33
  • s=\sqrt{443.33}
  • =21.05

Therefore standard deviation s=21.05

Similar questions