Math, asked by vanshg28, 11 months ago

Q. In the figure, ABCD is a square of side 1 dm and Angle PAQ = 45°. The perimeter (in dm) of the triangle PQC is
(NTSE STAGE-II 2014)

PLS ANSWER IT FAST.
DONT ANSWER IF DONT KNOW.

Attachments:

Answers

Answered by Swarup1998
16

To find: The perimeter of \Delta PQC.

Solution:

Given, \angle PAQ=45^{\circ}

and AB=BC=CD=DA=1\:dm

Let, \angle DAQ=x^{\circ}

Then, \angle BAP=90^{\circ}-(45^{\circ}+x^{\circ})=45^{\circ}-x^{\circ}

For the triangle \Delta ADQ.

Here \Delta ADQ is a right-angled triangle whose height is DQ and base is AD. Then,

\quad tanx=\frac{DQ}{AD}

\Rightarrow tanx=\frac{DQ}{1}

\Rightarrow DQ=tanx

\Rightarrow 1-QC=tanx\quad[\because CD=DQ+QC]

\Rightarrow \boxed{QC=1-tanx}

For the triangle \Delta ABP.

Here \Delta ABP is a right-angled triangle whose height is BP and base is AB. Then,

\quad tan(45^{\circ}-x)=\frac{BP}{AB}

\Rightarrow tan(45^{\circ}-x)=\frac{BP}{1}

\Rightarrow BP=\frac{tan45^{\circ}-tanx}{1+tan45^{\circ}\:tanx}

\Rightarrow 1-PC=\frac{1-tanx}{1+tanx}\quad[\because BC=BP+PC]

\Rightarrow PC=1-\frac{1-tanx}{1+tanx}

\Rightarrow \boxed{PC=\frac{2\:tanx}{1+tanx}}

For the triangle \Delta PQC.

Here \Delta PQC is a right-angled triangle whose height is PC and base is QC. Then

\quad {PQ}^{2}={PC}^{2}+{QC}^{2}

\Rightarrow {PQ}^{2}=\big(\frac{2\:tanx}{1+tanx}\big)^{2}+(1-tanx)^{2}

\Rightarrow {PQ}^{2}=\frac{4\:tan^{2}x+1-2\:tan^{2}x+tan^{4}x}{(1+tanx)^{2}}

\Rightarrow {PQ}^{2}=\big(\frac{1+tan^{2}x}{1+tanx}\big)^{2}

\Rightarrow \boxed{PQ=\frac{1+tan^{2}x}{1+tanx}}

Finding the perimeter of the triangle \Delta PQC.

\therefore the perimeter of the triangle \Delta is

=PQ+QC+PC

=\frac{1+tan^{2}x}{1+tanx}+(1-tanx)+\frac{2\:tanx}{1+tanx}

=\frac{1+tan^{2}x+1-tan^{2}x+2tanx}{1+tanx}

=\frac{2+2\:tanx}{1+tanx}

=\frac{2\:(1+tanx)}{1+tanx}

=\bold{2}

Answer: Therefore, the perimeter of the triangle \Delta PQC is 2 dm.

Attachments:
Answered by snehalmuduli
1

Answer:

In square ABCD, ∠DAQ=x

o

∴ tanx=

AD

DQ

=DQ

QC=1−DQ=1−tanx

∠PAB=45

o

−x

o

∴ tan(45−x)=

AB

BP

=

1

BP

cos(45−x)

sin(45−x)

=BP

cosx+sinx

cosx−sinx

=BP

1+tanx

1−tanx

=BP

∵ PC=1−BP

⟹ PC=1−(

1+tanx

1−tanx

)

⟹ PC=

1+tanx

2tanx

∵ △PCQ=90

o

⟹ PQ

2

=PC

2

+QC

2

⟹ PQ

2

=(

1+tanx

2tanx

)

2

+(1−tanx)

2

⟹ PQ=(

1+tanx

1+tan

2

x

)

Perimeter of △PQC=PQ+QC+PC

=(

1+tanx

1+tan

2

x

)+(1−tanx)+(

1+tanx

2tanx

)

=(

1+tanx

1+tan

2

x+2tanx

)+(1−tanx)

=

1+tanx

(1+tanx)

2

+(1−tanx)

=1+tanx+1−tanx=2

Hence, Perimeter of △PQC is 2.

Similar questions