Math, asked by Anonymous, 1 year ago

Q. Solve for 'x' and 'y':

x + xy + y = 11,
x²y + xy² = 30

Answers

Answered by ria113
5
Hey !!

Here is your answer.. ⬇⬇

x + xy + y = 17 \\  \\ x + y = 17 - xy \:  \: .......(1) \\  \\  {x}^{2} y +  {y}^{2} x = 30 \\  \\ take \: ( xy )\: as \:  \: common. \\  \\ xy(x + y) = 30 \\  \\ xy(11 - xy) = 30 \:  \: ......(from \: eq.(1)) \\  \\ 11xy -  {(xy)}^{2}  = 30 \\  \\ 30 - 11xy +  {(xy) }^{2}  \\  \\  {(xy)}^{2}  - 11xy + 30 = 0 \\  \\  {(xy)}^{2}  - 6xy - 5xy + 30 = 0 \\  \\ xy(xy - 6) - 5(xy - 6) \\  \\ (xy - 5)(xy - 6) = 0 \\  \\ xy = 5 \\ xy = 6 \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\ taking \:  \: xy = 5.... \:  \: (y =  \frac{5}{x} ) \\  \\ from \:  \: eq. \:  \: (1) \\  \\ x + y = 11 - 5 \\  \\ x + y = 6 \\  \\ x +  \frac{5}{x}  = 6 \\  \\  {x}^{2}  + 5 = 6x \\  \\  {x}^{2}  - 6x + 5 = 0 \\  \\  {x}^{2}  - x -  5x + 5 = 0 \\  \\ x(x - 1) - 5(x - 1) = 0 \\  \\ (x - 1)(x - 5) = 0 \\  \\ x = 1 \\ x = 5 \\  \\ y =   \frac{5}{x}  \\  \\ y =  \frac{5}{5}  = 1 \\  \\ y =  \frac{5}{1}  = 5 \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\ now \: taking \:  \: xy = 6 \:  \: .....(y =  \frac{6}{x})  \\  \\ from \:  \: eq. \:  \: (1) \\  \\ x + y = 11 - 6 \\  \\ x + y = 5 \\  \\ x +  \frac{6}{x} = 5 \\  \\  {x}^{2}    - 5x + 6 = 0 \\  \\  {x}^{2}  - 3x - 2x + 6 = 0 \\  \\ x(x - 3) - 2(x - 3) \\  \\ (x - 2)(x - 3) = 0 \\  \\ x = 2 \\ x = 3 \\  \\ y =  \frac{6}{x}  \\  \\ y =  \frac{6}{2}  = 3 \\  \\ y =  \frac{6}{3}  = 2 \\  \\ y = 2 \\ y = 3 \\  \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =



HOPE IT HELPS....

THANKS ^-^

Anonymous: Good:-)
ria113: thnx siso (:
Yuichiro13: Err.. Edit :v:
ria113: what's error..
Yuichiro13: :v: The Answer : (2,2) , (3,3)
Yuichiro13: :p !! Proper Arrangements Apply
Similar questions