Q-The perimeters of the two circular ends of the frustum of a cone are 48 cm and 36 cm. If the height of the frustum is 11 cm.
find curved surface area
Answers
Given height of frustum(h)= 11 cm
Let the radius, r1 and radius, r2 be the radii of the circular ends of the frustum and h be its height.
perimeter = 36 cm (given)
2 π r1=36
r1=36/2π
r1=18/π
perimeter=48 cm
2 π r2=48
r2= 24/π
Volume of Frustum (V)= 1/3 π {(r1)²+ (r2)² + (r1r2)} h
V= 1/3 x π x h {(18/π)²+(24/π)²+(18/π x 24/π)}
V= 1/3 x π x 11 {324/π²+576/π²+432/π²}
V= 1/3 x π x 11x 1/π² (324+576+432)
V= 1/3 x π x 11x 1/π² (1332)
V= 11/3x 1/π (1332)
V= 11/3 x 7/22 (1332)
V= (11 x 7× 1332)/ (22 ×3)
V= 7 x 222
V= 1554 cm³
Hence, the volume of frustum is 154 cm³
HOPE THIS WILL HELP YOU...
Let the radius, r1 and radius, r2 be the radii of the circular ends of the frustum and h be its height.
perimeter = 36 cm (given)
2 π r1=36
r1=36/2π
r1=18/π
perimeter=48 cm
2 π r2=48
r2= 24/π
Volume of Frustum (V)= 1/3 π {(r1)²+ (r2)² + (r1r2)} h
V= 1/3 x π x h {(18/π)²+(24/π)²+(18/π x 24/π)}
V= 1/3 x π x 11 {324/π²+576/π²+432/π²}
V= 1/3 x π x 11x 1/π² (324+576+432)
V= 1/3 x π x 11x 1/π² (1332)
V= 11/3x 1/π (1332)
V= 11/3 x 7/22 (1332)
V= (11 x 7× 1332)/ (22 ×3)
V= 7 x 222
V= 1554 cm³
Hence, the volume of frustum is 154 cm³
csa =22/7×11(36/2×22/7+18/22/7)
=396 cm.