Q30. Find the area of the polygon ABCD where AB is parallel to DC/AB.
Answers
Find the area of the polygon ABCD where AB is parallel to....?
See the above attached attachment...! You will have your answer..! ⬆️⬆️⬆️⬆️✨
Thanks...! ❣️ ❣️
Answer:
Area of a trapezium ABCD
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB)
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE)
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE) = (¹/₂ × AF × h) + (FE × h) + (¹/₂ × EB × h)
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE) = (¹/₂ × AF × h) + (FE × h) + (¹/₂ × EB × h) = ¹/₂ × h × (AF + 2FE + EB)
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE) = (¹/₂ × AF × h) + (FE × h) + (¹/₂ × EB × h) = ¹/₂ × h × (AF + 2FE + EB) = ¹/₂ × h × (AF + FE + EB + FE)
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE) = (¹/₂ × AF × h) + (FE × h) + (¹/₂ × EB × h) = ¹/₂ × h × (AF + 2FE + EB) = ¹/₂ × h × (AF + FE + EB + FE) = ¹/₂ × h × (AB + FE)
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE) = (¹/₂ × AF × h) + (FE × h) + (¹/₂ × EB × h) = ¹/₂ × h × (AF + 2FE + EB) = ¹/₂ × h × (AF + FE + EB + FE) = ¹/₂ × h × (AB + FE) = ¹/₂ × h × (AB + DC) square units.
Area of a trapezium ABCD = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE) = (¹/₂ × AF × h) + (FE × h) + (¹/₂ × EB × h) = ¹/₂ × h × (AF + 2FE + EB) = ¹/₂ × h × (AF + FE + EB + FE) = ¹/₂ × h × (AB + FE) = ¹/₂ × h × (AB + DC) square units. = ¹/₂ × (sum of parallel sides) × (distance between them)