Math, asked by VijayaLaxmiMehra1, 11 months ago

Qno. 1 ) Write sin theta in terms of cos theta.

Q 2 ) Write sec theta in terms of cot theta.

Q 3 ) Write tan theta in terms of sec theta.


Q 4 ) Write Cot theta in terms of cos theta.

Answers

Answered by Anonymous
125

Q 1

By trigonometric identity we know that sin^2\theta+cos^2\theta=1 .

sin^2\theta+cos^2\theta=1

Transpose cos^2\theta to the other side :

\implies sin^2\theta=1-cos^2\theta

Take square root both sides and we get :

\implies \boxed{sin\theta=\sqrt{1-cos^2\theta}}

Q 2

We also know that sec^2\theta-tan^2\theta=1

sec^2\theta-tan^2\theta=1

We know that tan\theta-\frac{1}{cot\theta}

\implies sec^2\theta-\frac{1}{cot^2\theta}=1

\implies sec^2\theta=1+\frac{1}{cot^2\theta}

\implies sec^2\theta=\frac{cot^2\theta+1}{cot^2\theta}

Take square root both sides :

\implies \boxed{sec\theta=\frac{\sqrt{cot^2\theta+1}}{cot\theta}}

Q 3

By trigonometric identities we have :

sec^2\theta-tan^2\theta=1

Transpose the value of tan^2\theta to the other side :

\implies tan^2\theta=sec^2\theta-1

Take square roots on both sides :

\implies \boxed{tan\theta=\sqrt{sec^2\theta-1}}

Q 4 :

We know that cosec^2\theta-cot^2\theta=1

\implies cot^2\theta=cosec^2\theta-1

Use cosec^2\theta=\frac{1}{sin^2\theta}

\implies cot^2\theta=\frac{1}{sin^2\theta}-1

\implies cot^2\theta=\frac{1-sin^2\theta}{sin^2\theta}

Use 1-sin^2\theta=cos^2\theta and sin^2\theta=1-cos^2\theta

\implies cot^2\theta=\frac{cos^2\theta}{1-cos^2\theta}

Take square root both sides :-

\implies \boxed{cot\theta=\frac{cos\theta}{\sqrt{1-cos^2\theta}}}


RealPoet: Perfect Answer :-)
lakshmi7072: Accurate answer
yahootak: amazing answer
15121115anil: great answered
rahul0067: great answer
Answered by Swarup1998
88

Trigonometric formulas :

      • sinx * cosecx = 1

      • cosx * secx = 1

      • tanx * cotx = 1

      • sin²x + cos²x = 1

      • sec²x - tan²x = 1

      • cosec²x - cot²x = 1

Solution :

1)

We know that,

         sin²θ + cos²θ = 1

    or, sin²θ = 1 - cos²θ

    or, sinθ = \sqrt{1-cos^{2}\theta} ,

which is the required term presentation.

2)

We know that,

         sec²θ - tan²θ = 1

    or, sec²θ = 1 + tan²θ

    or, sec²θ = 1 + \frac{1}{cot^{2}\theta} , since tanx*cotx = 1

    or, secθ = \sqrt{(1+\frac{1}{cot^{2}\theta})}

    or, secθ = \sqrt{\frac{cot^{2}\theta+1}{cot^{2}\theta}}

which is the required term presentation.

3)

We know that,

         sec²θ - tan²θ = 1

    or, tan²θ = sec²θ - 1

    or, tanθ = \sqrt{sec^{2}\theta-1} ,

which is the required term presentation.

4)

We know that,

         cosec²θ - cot²θ = 1

    or, cot²θ = cosec²θ - 1

    or, cot²θ = \frac{1}{sin^{2}\theta}-1

    or, cot²θ = \frac{1}{1-cos^{2}\theta}-1

    or, cot²θ = \frac{1-1+cos^{2}\theta}{1-cos^{2}\theta}

    or, cotθ = \sqrt{\frac{1-1+cos^{2}\theta}{1-cos^{2}\theta}}

    or, cotθ = \sqrt{\frac{cos^{2}\theta}{1-cos^{2}\theta}}

which is the required term presentation.


RealPoet: Perfect Answer :-)
Similar questions