Math, asked by MohanVearmaIi, 4 months ago

Question 1:-


Find the Curved surface Area of a cylinder with Radius 14 , Height 20 . ( Take π = 22/7 )



Question 2:-

Find the Curved surface Area of a cylinder with Radius 21 , Height 10 . ( Take π = 22/7 )

Answers

Answered by thebrainlykapil
10

\large\underline{ \underline{ \sf \maltese\red{ \: Question \: 1 :- }}}

  • Find the Curved surface Area of a cylinder with Radius 14cm , Height 20cm . ( Take π = 22/7 )

 \\

\large\underline{ \underline{ \sf \maltese{ \: Diagram:- }}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{20\: cm}}\put(9,17.5){\sf{14\:cm}}\end{picture}

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given :- }}}

  • Radius = { \boxed{14 \: cm}}
  • Height = { \boxed{20 \: cm}}

 \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Curved \: Surface \: of \: Cyclinder \: = \:2\pi \: \times  \: radius \:  \times  \: height   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{Curved \: Surface \: of \: Cyclinder \: = \:2 \:\times \:   \frac{22}{7}  \times  \:  14 \:  \times  \: 20  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Curved \: Surface \: of \: Cyclinder \: = \:2 \:\times \:   \frac{22}{\cancel\red{7}}  \times  \:  \cancel\red{14} \:  \times  \: 20  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Curved \: Surface \: of \: Cyclinder \: = \:2 \:\times \:  22  \times  \: 2\:  \times  \: 20  }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\bf{ Curved \: Surface \: of \: Cyclinder \:  =  \: 1760\:cm }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese\red{ \: Question \: 2 :- }}}

  • Find the Curved surface Area of a cylinder with Radius 21 , Height 10 . ( Take π = 22/7 )

 \\

\large\underline{ \underline{ \sf \maltese{ \: Diagram:- }}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{10\: cm}}\put(9,17.5){\sf{21\:cm}}\end{picture}

.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given :- }}}

  • Radius = { \boxed{21 \: cm}}
  • Height = { \boxed{10 \: cm}}

.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Curved \: Surface \: of \: Cyclinder \: = \:2\pi \: \times  \: radius \:  \times  \: height   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{Curved \: Surface \: of \: Cyclinder \: = \:2 \:\times \:   \frac{22}{7}  \times  \:  21 \:  \times  \: 10 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Curved \: Surface \: of \: Cyclinder \: = \:2 \:\times \:   \frac{22}{\cancel\red{7}}  \times  \:  \cancel\red{21} \:  \times  \: 10  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Curved \: Surface \: of \: Cyclinder \: = \:2 \:\times \:  22  \times  \: 3\:  \times  \: 10  }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\bf{ Curved \: Surface \: of \: Cyclinder \:  =  \: 1320\: cm }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge:-

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ItzCuppyCakeJanu
8

Answer:

CORRECT ANSWER⬆⬆⬆⬆

Step-by-step explanation:

Similar questions