Math, asked by BrainlyHelper, 1 year ago

Question 21: Find the values of tan¯¹ √3 - cot-1 (-√3)is equal to (A) π (B) -π/2 (C) 0 (D) 2√3

Class 12 - Math - Inverse Trigonometric Functions

Answers

Answered by Ruhanika105
172
We know that tan¯¹ √3 is at the angle π/3.
Now,

⇒ tan¯¹ √3 - cot-1 (-√3)
⇒ π/3 - (π-π/3)
⇒ π/3 - 5π/6
⇒ -3π/6
⇒ -π/2

Hope it helps...
Answered by Swarup1998
0

\mathsf{tan^{-1}(\sqrt{3})-cot^{-1}(-\sqrt{3})=-\dfrac{\pi}{2}}

Correct option: (B) \mathsf{-\dfrac{\pi}{2}}

To find:

The value of \mathsf{tan^{-1}(\sqrt{3})-cot^{-1}(-\sqrt{3})}

Concept to be used:

\mathsf{cot^{-1}(-x)=\pi-cot^{-1}x,x\in\mathbb{R}}, since the principal value of \mathsf{cot^{-1}x} lies in (0,\pi).

Values to remember:

  • \mathsf{tan^{-1}\sqrt{3}=\dfrac{\pi}{3}}

  • \mathsf{cot^{-1}\sqrt{3}=\dfrac{\pi}{6}}

Step-by-step explanation:

Now, \mathsf{tan^{-1}(\sqrt{3})-cot^{-1}(-\sqrt{3})}

\mathsf{=\dfrac{\pi}{3}-(\pi-cot^{-1}\sqrt{3})}

  • since \mathsf{cot^{-1}(-x)=\pi-cot^{-1}x,x}\in\mathbb{R}

\mathsf{=\dfrac{\pi}{3}-(\pi-\dfrac{\pi}{6})}

\mathsf{=\dfrac{\pi}{3}-\dfrac{6\pi-\pi}{6}}

\mathsf{=\dfrac{\pi}{3}-\dfrac{5\pi}{6}}

\mathsf{=\dfrac{2\pi-5\pi}{6}}

\mathsf{=-\dfrac{3\pi}{6}}

\mathsf{=-\dfrac{\pi}{2}}

Final answer:

\boxed{\mathsf{tan^{-1}(\sqrt{3})-cot^{-1}(-\sqrt{3})=-\dfrac{\pi}{2}}}

#SPJ3

Similar questions