Math, asked by BrainlyHelper, 1 year ago

Question 3 Find the values of other five trigonometric functions if cot x = 3/4 , x lies in third quadrant.

Class X1 - Maths -Trigonometric Functions Page 63

Answers

Answered by abhi178
26
Cotx = 3/4 where x lies in 3rd quadrant.

In 3rd quadrant :- tanx, cotx are positive . all rest are negative.

cotx = 3/4 = b/P
h = √(b²+P²) = √(3²+4²)=±5
tanx = 1/cotx = 4/3
Cosx = b/h = - 3/5
Secx = 1/cosx = -5/3
sinx = P/h = -4/5
Cosecx = -5/4
Answered by Anonymous
16

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

\tt{\rightarrow cotx=\dfrac{3}{4}}

As we know that :-

\tt{\rightarrow tanx=\dfrac{1}{cotx}}

\tt{\rightarrow tanx=\dfrac{1}{(3/4)}}

\tt{\rightarrow tanx=\dfrac{4}{3}}

Also we know that :-

{\boxed{\sf\:{1+tan^2x=sec^2x}}}

Hence,

{\boxed{\sf\:{Putting\;the\;values\;:-}}}

\tt{\rightarrow 1+(\dfrac{4}{3})^2=sec^2x}

\tt{\rightarrow 1+\dfrac{16}{9}=sec^2x}

\tt{\rightarrow\dfrac{25}{9}=sec^2x}

\tt{\rightarrow secx=\pm\dfrac{5}{3}}

Here we get,

x lies in third quadrant.

Hence,

Value of secx will be negative.

Now,

\tt{\rightarrow secx=-\dfrac{5}{3}}

Now,

\tt{\rightarrow cosx=\dfrac{1}{secx}}

\tt{\rightarrow cosx=\dfrac{1}{(-5/3)}}

\tt{\rightarrow cosx=-\dfrac{3}{5}}

Now,

\tt{\rightarrow tanx=\dfrac{sinx}{cosx}}

\tt{\rightarrow tanx=\dfrac{(3/5)}{-(4/5)}}

\tt{\rightarrow\dfrac{4}{3}=\dfrac{-3}{5}}

\tt{\rightarrow sinx=\dfrac{4}{3}\times\dfrac{-3}{5}}

\tt{\rightarrow sinx=-\dfrac{4}{5}}

Now,

\tt{\rightarrow cosecx=\dfrac{1}{sinx}}

\tt{\rightarrow cosecx=-\dfrac{5}{4}}

Similar questions