Chemistry, asked by BrainlyHelper, 1 year ago

Question 7.22 Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium:

2BrCl(g) <---> Br2(g) + Cl2(g)

for which Kc= 32 at 500 K. If initially pure BrCl is present at a concentration of 3.3 × 10–3 molL–1, what is its molar concentration in the mixture at equilibrium?

Class XI Equilibrium Page 226

Answers

Answered by abhi178
21

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \: 2BrCl(g) == Br2(g) + Cl2(g) ; Kc = 32  \: at  \: 500K  \\ at \: t = 0 \:  \:  \: 3.3 \times  {10}^{ - 3} mol \:  \:  \:  \:  \:  \: 0 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \: 0 \\ at \: eqlm \:  \: (3.3 \times  {10}^{ - 3}  - x) \:  \:  \:  \:  \:  \:  \frac{x}{2}   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \frac{x}{2}
we know,



K_c=\frac{[Br_2]\:[Cl_2]}{[BrCl_2]^2}  \\ \\  =  \frac{ \frac{x}{2} \times  \frac{x}{2}  }{(3.3 \times  {10}^{ - 3} - x)^2} = 32 \\  \\  =  \frac{ {x}^{2} }{4 \times  {(3.3 \times  {10}^{ -  3} - x) }^{2} }  = 32
take square root both sides,
x/2(3.3 × 10^-3 - x) = √32
x/(3.3 × 10^-3 - x) = 5.656 × 2 = 11.312
x = 11.312(3.3 × 10^-3 - x )
= 0.03732 - 11.312x
12.312x = 0.03732
x = 3.032 × 10^-3 mol/L

hence, molar concentration of BrCl = (3.3 × 10^-3 - x ) mol/L
= (3.3 × 10^-3 - 3.032 × 10^-3) mol/L
= 2.68 × 10^-4 mol/L
Similar questions