Math, asked by bhoomigupta309, 10 months ago

Question.8 of very short...
aap sabhi se vinti hai ki question pura solve kre fir post kre ...
solution ke alava or kuchh post na kre yahan per..
mujhe ye question aa nhi raha isliye mene ye pucha...
or..
mujhe sab log instagram per follow kro please..
ID-bhoomigupta2

Attachments:

Answers

Answered by Anonymous
59

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

If A(1,2) , B(4,3) and C(6,6) are three vertices of parallelogram ABCD.

\bf{\red{\underline{\bf{To\:find\::}}}}

The co-ordinate of D.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the co-ordinate of D be (r,m)

We know that formula of the midpoint (M) :

\boxed{\bf{Midpoint\:(M)=\frac{x_{1}+x_{2}}{2} ,\frac{y_{1}+y_{2}}{2} }}}}

Show diagram :

\setlength{\unitlength}{1.3cm}\begin{picture}(8,2)\thicklines\put(8.6,3){\large{A\:(1,2)}}\put(9,1.3){\sf{}}\put(9.9,1.3){\sf{}}\put(7.7,0.9){\large{B\:\:(4,3)}}\put(9.2,0.7){\sf{\large{}}}\put(11.1,0.9){\large{C(6,6)}}\put(9.9,2.1){\large{O}}\put(8,1){\line(1,0){3}}\put(11,1){\line(1,2){1}}\put(9,3){\line(3,0){3}}\put(11,1){\line(-1,1){2}}\put(8,1){\line(2,1){4}}\put(8,1){\line(1,2){1}}\put(12.1,3){\large{D(r,m)}}\end{picture}

As we know that diagonal of parallelogram bisect to each other.

For AC :

\bullet\sf{x_{1}=1\:\:\:x_{2}=6}\\\bullet\sf{y_{1}=2\:\:\:y_{2}=6}

For BD :

\bullet\sf{x_{1}=4\:\:\:x_{2}=r}\\\bullet\sf{y_{1}=3\:\:\:y_{2}=m}

A/q

\longrightarrow\bf{Mid-point\:of\:AC=Mid-point\:of\:BD}

\longrightarrow\sf{\bigg(\dfrac{1+6}{2} ,\dfrac{2+6}{2} \bigg)=\bigg(\dfrac{4+r}{2} ,\dfrac{3+m}{2} \bigg)}\\\\\\\longrightarrow\sf{\bigg(\dfrac{7}{2} ,\cancel{\dfrac{8}{2}} \bigg)=\bigg(\dfrac{r+4}{2} ,\dfrac{m+3}{2} \bigg)}\\\\\\\longrightarrow\sf{\bigg(\dfrac{7}{2} ,4\bigg)=\bigg(\dfrac{r+4}{2} ,\dfrac{m+3}{2} \bigg)}\\\\\\\longrightarrow\sf{\dfrac{r+4}{\cancel{2}} =\dfrac{7}{\cancel{2}} \:\:Or\:\:\dfrac{m+3}{2} =4}\\\\\\\longrightarrow\sf{r+4=7\:\:\:Or\:\:\:m+3=8}\\\\\\

\longrightarrow\sf{r=7-4\:\:\:Or\:\:\:m=8-3}\\\\\\\longrightarrow\sf{\green{r=3\:\:\:Or\:\:\:m=5}}

Thus;

The co-ordinate of D is (3,5) .


Anonymous: Awesome
Answered by kiran01486
23

Let D(a,b) be the 4th vertex.

Midpoint of AC = (1+6/2,2+6/2) = (7/2,4)        

Midpoint of BD = (a+4/2,b+3/2)

a+4/2 = 7/2 , b+3/2 = 4

a + 4 = 7, b + 3 = 8

a = 3, b = 5

Hope this helps!

Similar questions