Math, asked by BrainlyProgrammer, 2 months ago

Question for Maths Students...

Prove that
  \orange{ \large{ \dag}} \red{ \tt \: (x + a)(x + b)(x + c) =  {x}^{3}  +  {x}^{2} (a + b + c) + x(ab + bc + ac) + abc}

Answers

Answered by kailashmannem
263

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

 \sf (x + a)(x + b)(x + c)

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Prove:-}}}}}}}

 \sf (x + a)(x + b)(x + c) = x^3 + x^2 (a + b + c) + x (ab + bc + ac) + abc

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Proof:-}}}}}}}

 \sf (x + a)(x + b)(x + c)

  • First let's take (x + a)(x + b),

 \sf (x + a)(x + b)

 \sf x (x + b) + a (x + b)

 \sf x^2 + bx + ax + ab

  • Now, let's multiply the above one with  \sf (x + c)

 \sf (x² + bx + ax + ab)(x + c)

 \sf x (x^2 + bx + ax + ab) + c (x^2 + bx + ax + ab)

 \sf x^3 + bx^2 + ax^2 + abx + cx^2 + bcx + acx + abc

  • Rearranging the terms,

 \sf x^3 + ax^2 + bx^2 + cx^2 + abx + bcx + acx + abc

  • Taking out common ones i.e x² and x,

 \sf x^3 + \underline{ax^2 + bx^2 + cx^2} + \underline{abx + bcx + acx} + abc

 \sf x^3 + x^2 (a + b + c) + x (ab + bc + ac) + abc

  • Therefore,

 \underline{\boxed{\purple{\tt (x + a)(x + b)(x + c) = x^{3} + x^{2} (a + b + c) + x(ab + bc + ac) + abc}}}

Hence, proved.

Answered by StormEyes
546

Solution!!

(x + a)(x + b)(x + c) = x³ + x²(a + b + c) + x(ab + bc + ac) + abc

Taking LHS,

= (x + a)(x + b)(x + c)

Multiplying the parentheses

= (x² + bx + ax + ab)(x + c)

Multiply the parentheses

= x³ + cx² + bx² + bcx + ax² + acx + abx + abc

Reordering the terms

= x³ + ax² + bx² + cx² + abx + bcx + acx + abc

Taking x² as common in 2nd, 3rd and 4th term

= x³ + x²(a + b + c) + abx + bcx + acx + abc

Taking x as common in 3rd, 4th and 5th term

= x³ + x²(a + b + c) + x(ab + bc + ac) + abc

LHS = RHS

Hence, proved.

Similar questions