Math, asked by Anonymous, 8 months ago

Question:—
In \DeltaABC, if 3\angleA = 4\angleB = 6\angleC. Then, calculate the value of \angleA, \angleB, \angleC.
______________________
Kindly avoid spamming please!​

Answers

Answered by kprbpl1972
3

Step-by-step explanation:

A=x/3 B=x/4 c=x/6

A+B+C=180

x/3+x/4+x/6=180

9x/12=180

x=240

a=80 B=60 C=40

Answered by Anonymous
61

❤❤Hlo Roaster Toaster Girl❤❤

Answer:

Given:

  • \sf{3 \angle A = 4 \angle B = 6 \angle C}

To find :

  • \sf{\angle A , \angle B , \angle C}

\mathfrak{\underline{Solution:-}}

We are given the ratio of all angles. So we can write all angles as the fraction of one angle. For this we take one part lf first two angles then the other two.

3 \angle A = 4 \angle B = 6 \angle C

Now first taking angles A and B :

= 3\angleA = 4

= \angleA = \dfrac{4}{3}

Now taking angles B and C :

= 4 \angleB = 6

= \angleB = \dfrac{{6\!\!\!\!/}^{{}^{3}}}{{4\!\!\!\!/}^{{}^{2}}}

= \angleB = \dfrac{3}{2} \angleC

Now putting value of B from (ii) in (i):

= \angleA = \dfrac{{4\!\!\!\!/}^{{}^{2}}}{3\!\!\!\!/} \times \dfrac{3\!\!\!\!/}{2\!\!\!\!/} \angle C

= \angleA = 2

Using the angle sum property:

\boxed{\sf{\angle A + \angle B + \angle C = 180^0}}

Plugging in all the values:

= \angleA + \dfrac{3}{4} \angleA + \dfrac{1}{2} \angleA = 180⁰

= \dfrac{4 \angle A + 3 \angle A + 2 \angle A}{4} = 180^0

= 9\angle A = 180⁰ × 4

= \angleA = \dfrac{180^0 \times 4}{9}

= \angleA = 80⁰

➣Now using (i) , (ii) , (iii) , We find the other angles as :

= \angleB = \dfrac{3}{4} \times 80 = 60

=\angleC = \dfrac{1}{2} \times 80 = 40

Hope it helps❤❤❤

Attachments:
Similar questions