Math, asked by private11, 1 year ago

question is in attachment​

Attachments:

Answers

Answered by ravi34287
6

Given, A + B = 90°

 \quad \quad A = 90\degree-B  \\  \quad \quad B = 90  \degree- A

 \text{To prove : }\sqrt{ \dfrac{ \text{tanAtan B + tanAcotB}}{ \text{sinAsecB}} - \dfrac{ { \text{sin}}^{2}B}{  \text{{cos}}^{2}A } } =  \text{tanA}

Solving left hand side,

 \implies \sqrt{ \dfrac{ \text{tanAtan B + tanAcotB}}{ \text{sinAsecB}} - \dfrac{ { \text{sin}}^{2}B}{  \text{{cos}}^{2}A } }

From the properties of trigonometry, we know : -

=> sinA = cos( 90 - A )

=> tanA = cot( 90 - A )

 \implies \sqrt{ \dfrac{ \text{cot(90 - A)tan B + cot(90 - A)cotB}}{ \text{cos(90 - A)secB}} - \dfrac{ { \text{cos}}^{2}(90 - B)}{  \text{{sin}}^{2}A } }

From above,

90 - A = B and 90 - B = A

 \implies \sqrt{ \dfrac{ \text{cotBtan B + cotBcotB}}{ \text{cosBsecB}} - \dfrac{ { \text{cos}}^{2}A}{  \text{{cos}}^{2}A } }  \\  \\  \\  \implies \sqrt{ \dfrac{ \bigg(\dfrac{1}{tanB} \times tan B  \bigg)+ cot {}^{2} B}{ { \dfrac{1}{secB} \times secB}} - 1} \\  \\  \\  \implies  \sqrt{1 +  \cot {}^{2}B - 1 } \\  \\  \implies  \sqrt{cot {}^{2}B }  \\  \\\implies cotB

= > tan( 90 - B )

= > tanA

Hence, proved.

Answered by mathsdude85
18

Answer is in attachment

hope it helps

thank you

Attachments:
Similar questions