QUESTION NUMBER : 17
Attachments:
Answers
Answered by
56
Answer :
Given that,
a² sec²θ - b² tan²θ = c²
➨ a² sec²θ - b² (sec²θ - 1) = c²,
since sec²θ - tan²θ = 1
➨ a² sec²θ - b² sec²θ + b² = c²
➨ (a² - b²) sec²θ = c² - b²
➨ sec²θ = (c² - b²)/(a² - b²)
➨ 1/(cos²θ) = (c² - b²)/(a² - b²),
since secθ = 1/cosθ
➨ cos²θ = (a² - b²)/(c² - b²)
➨ 1 - sin²θ = (a² - b²)/(c² - b²),
since sin²θ + cos²θ = 1
➨ sin²θ = 1 - (a² - b²)/(c² - b²)
➨ sin²θ = (c² - b² - a² + b²)/(c² - b²)
➨ sin²θ = (c² - a²)/(c² - b²) [Proved]
Hope it helps!
Given that,
a² sec²θ - b² tan²θ = c²
➨ a² sec²θ - b² (sec²θ - 1) = c²,
since sec²θ - tan²θ = 1
➨ a² sec²θ - b² sec²θ + b² = c²
➨ (a² - b²) sec²θ = c² - b²
➨ sec²θ = (c² - b²)/(a² - b²)
➨ 1/(cos²θ) = (c² - b²)/(a² - b²),
since secθ = 1/cosθ
➨ cos²θ = (a² - b²)/(c² - b²)
➨ 1 - sin²θ = (a² - b²)/(c² - b²),
since sin²θ + cos²θ = 1
➨ sin²θ = 1 - (a² - b²)/(c² - b²)
➨ sin²θ = (c² - b² - a² + b²)/(c² - b²)
➨ sin²θ = (c² - a²)/(c² - b²) [Proved]
Hope it helps!
preeti1960p9651m:
thanx
Answered by
7
_______________________
Given , a² sec²∅ - b² tan²∅ = c²
To prove , sin∅ = ( c² - a² ) / ( c² - b² )
Now ,
a² sec²∅ - b² tan²∅ = c²
=> a² sec²∅ - b² ( sec²∅ - 1 ) = c²
[ • We know , sec²∅ - tan²∅ = 1 → Using this identity ,
we get , tan²∅ = sec²∅ - 1 ]
=> a² sec²∅ - b² sec²∅ + b² = c²
=> sec²∅ ( a² - b² ) = ( c² - b² )
=> sec²∅ = ( c² - b² ) / ( a² - b² )
[ • We know , sec∅ = 1 / cos∅ . so , sec²∅ = 1 / cos²∅ ]
=> 1 / cos²∅ = ( c² - b² ) / ( a² - b² )
=> cos²∅ = ( a² - b² ) / ( c² - b² )
[ • sin²∅ + cos²∅ = 1 → Using this identity ,
we get , cos²∅ = 1 - sin²∅ ]
=> 1 - sin²∅ = ( a² - b² ) / ( c² - b² )
=> sin²∅ = 1 - { ( a² - b² ) / ( c² - b² ) }
=> sin²∅ = { ( c² - b² ) - ( a² - b² ) } / ( c² - b² )
=> sin²∅ = ( c² - b² - a² + b² ) / ( c² - b² )
=> sin²∅ = ( c² - a² ) / ( c² - b² ) [ ★ Hence Proved ]
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
Similar questions