Math, asked by Anonymous, 8 months ago

Question:-

 \rm \:  {x}^{2}   \not= n\pi + 1 \:, n \in \: N(the \: set \: of \: natural \: numers), \: the \:
  \rm \int \: x \sqrt{ \dfrac{2 \sin( {x}^{2}  - 1)  -  \sin2( {x}^{2} - 1 ) }{2 \sin( {x}^{2} - 1 )  +  \sin( {x}^{2} - 1 ) } } dx
( Where c is a constant of integration)

Answers

Answered by sandy1816
8

Answer:

your answer attacted in the photo

Attachments:
Answered by Anonymous
8

put \large\rm { ( x^{2} -1) = 1}

\large\rm { \implies 2x \ dx = dt}

\large\rm { \therefore I = \frac{1}{2} \displaystyle\int \rm { \sqrt{ \frac{1 - \cos \ t}{1 + \cos t}}} dt }

\large\rm { = \frac{1}{2} \int \tan \big ( \frac{t}{2} \big ) dt}

\large\rm { = \ln \bigg | \sec \frac{t}{2} \bigg | + c}

\large\rm { = \ln \bigg | \sec \big ( \frac{ x^{2} -1}{2} \big ) \bigg | + c}

or

\large\rm { \log_{e} ln \bigg | \sec \big ( \frac{ x^{2} -1}{2} \big ) \bigg | + c}

Similar questions