Math, asked by sachinsuresh5317, 9 months ago

R be a relation on Z defined by R= {(a,b): a-b is an integer} show that R is an equivalence relation​

Answers

Answered by MaheswariS
9

\textbf{Given:}

aRb\;{\iff}\;\text{a-b is an integer}

\textbf{To prove:}

\text{R is an equivalence relation}

\textbf{Solution:}

\text{Let $a{\in}Z$}

\implies\,a-a=0\;\text{which is an integer}

\implies\,aRa

\therefore\,\textbf{R is reflexive}

\text{Let $aRb$}

\implies\,a-b\;\text{is an integer}

\implies\,b-a\;\text{is also an integer}

\implies\,bRa

\therefore\,\textbf{R is symmetric}

\text{Let $aRb$ and $bRc$}

\text{Then,}\;a-b=k\;\;\text{and}\;\;b-c=l\;\;\text{where k,l are integers}

\text{Adding we get,}

(a-b)+(b-c)=k+l

\implies\,a-c=k+l\;\text{which is an integer}

\implies\,aRc

\therefore\textbf{R is transitive}

\textbf{Hence R is an equivalence relation}

Similar questions