Math, asked by kauravavirendra, 5 months ago

रैखिक समीकरण युग्म का सबसे व्यापक रूप​

Answers

Answered by amitnrw
2

Given : रैखिक समीकरण युग्म  

To Find : रैखिक समीकरण युग्म   का सबसे व्यापक रूप

Solution:

रैखिक समीकरण युग्म   का सबसे व्यापक रूप

a₁x + b₁y + c₁= 0 तथा

a₂x + b₂y + c₂ = 0,

a₁² + b₁² ≠ 0, a₂² + b₂² ≠ 0.

The general form for a pair of linear equations in two variables x and y is

a₁x + b₁y + c₁= 0 and

a₂x + b₂y + c₂ = 0,

Where a₁, b₁, c₁, a₂ , b₂, c₂ are all real numbers and a₁² + b₁² ≠ 0, a₂² + b₂² ≠ 0.

The general form of a linear equation in two variables is :

Ax + By + C = 0

A , B are co-efficient of x and y  , C is the constant

other form

x/a  + y/b  = 1

y = mx + c

Learn More:

A pair of linear equations 111 2 2 2 ax by c ax by c + += + += 0, 0 is ...

brainly.in/question/18461075

If ax2+bx+c and bx2+ax+c have a common factor x+1 then show that ...

brainly.in/question/11220575

Similar questions