रैखिक समीकरण युग्म का सबसे व्यापक रूप
Answers
Given : रैखिक समीकरण युग्म
To Find : रैखिक समीकरण युग्म का सबसे व्यापक रूप
Solution:
रैखिक समीकरण युग्म का सबसे व्यापक रूप
a₁x + b₁y + c₁= 0 तथा
a₂x + b₂y + c₂ = 0,
a₁² + b₁² ≠ 0, a₂² + b₂² ≠ 0.
The general form for a pair of linear equations in two variables x and y is
a₁x + b₁y + c₁= 0 and
a₂x + b₂y + c₂ = 0,
Where a₁, b₁, c₁, a₂ , b₂, c₂ are all real numbers and a₁² + b₁² ≠ 0, a₂² + b₂² ≠ 0.
The general form of a linear equation in two variables is :
Ax + By + C = 0
A , B are co-efficient of x and y , C is the constant
other form
x/a + y/b = 1
y = mx + c
Learn More:
A pair of linear equations 111 2 2 2 ax by c ax by c + += + += 0, 0 is ...
brainly.in/question/18461075
If ax2+bx+c and bx2+ax+c have a common factor x+1 then show that ...
brainly.in/question/11220575