Math, asked by amritdonali786, 3 months ago

Ratiolise the dominators
1/√7-√6​

Answers

Answered by TrAnSLIMit
2

Step-by-step explanation:

 \frac{1}{ \sqrt{7} -  \sqrt{6}  }

 =  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  \times  \frac{ \sqrt{7}  +  \sqrt{6} }{ \sqrt{7} +  \sqrt{6}  }

 =  \frac{ \sqrt{7} +  \sqrt{6}  }{7 - 6}

 =  \sqrt{7}  +  \sqrt{6}

HOPE it will HELP you✌️

PLEASE mark the answer as BRAINLIEST. ✍️

Answered by BrainlyRish
1

Given : \dfrac{1}{\sqrt {7} - \sqrt {6}}

Need To Rationalise : The Denominator of \dfrac{1}{\sqrt {7} - \sqrt {6}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \sf{ \star \dfrac{1}{\sqrt {7} - \sqrt {6}}}

⠀⠀⠀⠀⠀For Rationalizing the given Denominator we have to multiply Both Numerator and Denominator by \sqrt {7} + \sqrt {6} :

⠀⠀⠀⠀⠀⠀\underline {\bf{\:Now \: By \: Multiplying \: both\: [Numerator \:and\: Denominator] \::}}\\

 \qquad \qquad:\implies \sf{  \dfrac{1}{\sqrt {7} - \sqrt {6}}}

 \qquad \qquad:\implies \sf{  \dfrac{1}{\sqrt {7} - \sqrt {6}} \dfrac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}}

 \qquad \qquad:\implies \sf{  \dfrac{\sqrt{7}+ \sqrt{6}}{7 -6}}

 \qquad \qquad:\implies \sf{  \dfrac{\sqrt{7}+ \sqrt{6}}{1}}

Or,

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Answer = \sqrt {7}+ \sqrt {6}\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  By \:Rationalizing \:we \:get\:\bf{ \sqrt {7}+ \sqrt {6}\:\: }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions