rationalise
1/(√2+√3-√5)
Answers
Answered by
4
1/(√2+√3-√5)
Rationalising factor = √2+√3+√5
1/(√2+√3-√5)×(√2+√3+√5)/(√2+√3+√5)
→ √2+√3+√5/[(√2+√3)² - (√5²)]
→ √2+√3+√5/(√2²+√3²+2(√2)(√3)) - 5)
→ √2+√3+√5/(2+3+2√6-5)
→ √2+√3+√5/2√6
The denominator is still irrational.
So,we have to rationalise it further.
Now,rationalising factor = √6
→ √2+√3+√5/2√6 ×√6/√6
→ √6(√2+√3+√5)/2(√6)²
→ √12+√18+√30/2(6)
→ √12+√18+√30/12
→ (2√3+3√2+√30)/12
It is rationalised now.
Hope it helps
Rationalising factor = √2+√3+√5
1/(√2+√3-√5)×(√2+√3+√5)/(√2+√3+√5)
→ √2+√3+√5/[(√2+√3)² - (√5²)]
→ √2+√3+√5/(√2²+√3²+2(√2)(√3)) - 5)
→ √2+√3+√5/(2+3+2√6-5)
→ √2+√3+√5/2√6
The denominator is still irrational.
So,we have to rationalise it further.
Now,rationalising factor = √6
→ √2+√3+√5/2√6 ×√6/√6
→ √6(√2+√3+√5)/2(√6)²
→ √12+√18+√30/2(6)
→ √12+√18+√30/12
→ (2√3+3√2+√30)/12
It is rationalised now.
Hope it helps
Similar questions