rationalise the denominator of 1/root 5+root6-root2
Answers
Answered by
9
Answer:
1/(√5 + √6 - √2) =(3√5 + √6 - 9√2 + 4√15)/39
Step-by-step explanation:
rationalise the denominator of 1/root 5+root6-root2
1/(√5 + √6 - √2)
= (1/(√5 + √6 - √2) ) *(√5 + √6 + √2)/(√5 + √6 + √2)
= (√5 + √6 + √2) / ( (√5 + √6)² - √2²)
= (√5 + √6 + √2) / ( 5 +6 + 2√30 - 2)
= (√5 + √6 + √2) / ( 9 + 2√30)
Again rationalizing
= ((√5 + √6 + √2) / ( 9 + 2√30) ) * ( 9 - 2√30)/ ( 9 + 2√30)
= ((√5 + √6 + √2) * ( 9 - 2√30) )) / ( 9² - (2√30)²)
= (9√5 + 9√6 + 9√2 - 10√6 -12√5 - 4√15)/(81 - 120)
= ( -3√5 - √6 + 9√2- 4√15)/(-39)
= (3√5 + √6 - 9√2 + 4√15)/39
Answered by
0
Answer:
Step-by-step explanation:
1/root5+root6-root2=1/root9
=>1*root9/root9*root9
=>root9/9
=>3/9=>1/3
hope it helps you
please mark it brainliest!!!
Similar questions