Math, asked by cr739, 10 months ago

Rationalise the denominator of 14/√108-√96+√192-√54​

Answers

Answered by mad210218
103

Given :

 \frac{14}{ \sqrt{108} -  \sqrt{96}  +  \sqrt{192} -  \sqrt{54}   }

To find :

Rationalise the denominator.

Solution :

Firstly we will prime factorise all the elements of denominator, so

 \frac{14}{ \sqrt{108} -  \sqrt{96}  +  \sqrt{192} -  \sqrt{54}   }

this will become,

 \frac{14}{ \sqrt{ {2}^{2} \times  {3}^{3}  } -  \sqrt{ {2}^{5}  \times 3}  +  \sqrt{ {2}^{6} \times 3 } -  \sqrt{2 \times  {3}^{3} }   }

When we take even powers of all the elements outside the square roots,

we will get,

 \frac{14}{ 6\sqrt{ 3  } -  4\sqrt{ 6}  +  8\sqrt{ 3 } -  3\sqrt{6} }

On further solving the denominator,

we get

 \frac{14}{ 14\sqrt{ 3  } -  7\sqrt{ 6}   }

On dividing numerator and denominator by 7,

we get

 \frac{2}{ 2\sqrt{ 3  } -  \sqrt{ 6}   }

then, to rationalise the denominator, we multiply numerator and denominator with :

2 \sqrt{3 }  +  \sqrt{6}

so,we will get,

  \\ \frac{2}{ 2\sqrt{ 3  } -  \sqrt{ 6}   } \times  \frac{2 \sqrt{3} +  \sqrt{6}  }{2 \sqrt{3} +  \sqrt{6}  }

 =  \frac{4{\sqrt {3}} + 2{\sqrt {6}}} {12 - 6}\\ =  \frac{4{\sqrt {3}} + 2{\sqrt {6}}} {6} \\  =  \bf \frac{2 \sqrt{3}  +  \sqrt{6} }{3}

So,

Rationalisation of given expression is,

  \\  \bf \:  = \frac{2 \sqrt{3} +  \sqrt{6}  }{3}

Answered by shilpianitjain
31

Step-by-step explanation:

answer to this question is 4

Attachments:
Similar questions