Math, asked by Beardyjock, 1 year ago

Rationalise the denominator of √2/√2+√3

Answers

Answered by Swarup1998
3
The answer is given below :

Now,

 \frac{ \sqrt{2} }{ \sqrt{2}  +  \sqrt{3} }  \\  \\  =  \frac{ \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3  } -  \sqrt{2}  }  \\  \\  =  \frac{ \sqrt{2} ( \sqrt{3}  -  \sqrt{2}  )}{( \sqrt{3}  +  \sqrt{2} )( \sqrt{3} -  \sqrt{2}  )}  \\  \\  =  \frac{ \sqrt{2.3}  -  \sqrt{2.2} }{3 - 2}  \\  \\  =  \frac{ \sqrt{6} - 2 }{1}  \\  \\   = \sqrt{6}  - 2

Thank you for your question.

Swarup1998: √2(√3 - √2)
Swarup1998: = √2×√3 - √2.√2
Swarup1998: = √(2×3) - √(2×2)
Swarup1998: We know that : √(a×a) = a
Anonymous: ah ! @Beardyjock , here ' . ' also means ×
Swarup1998: Yes.
Swarup1998: It is.
Beardyjock: oh oh. I got it
Beardyjock: thank you so much.
Swarup1998: My pleasure to help you.
Answered by Anonymous
6
Hi there !!

Given,

to rationalize the denominator in

 \frac{ \sqrt{2} }{ (\sqrt{2} + \sqrt{3}) }

 = \frac{( \sqrt{2})( \sqrt{2} - \sqrt{3}) }{( \sqrt{2} + \sqrt{3})( \sqrt{2} - \sqrt{3} ) }
Using the identity in the denominator ie, (a +b)(a - b) = a² - b²
we have,

 = \frac{( \sqrt{2}( \sqrt{2} ) - (\sqrt{2})( \sqrt{3} ) }{( \sqrt{2}) {}^{2} - (\sqrt{3}) {}^{2} }

 = \frac{2 - \sqrt{6} }{2 - 3}

 = \frac{2 - \sqrt{6} }{ - 1}

 = - (2 - \sqrt{6} )

= -2 + ✓6 is the answer

or

✓6 - 2

Anonymous: comment below if any doubts :-)
Similar questions