Math, asked by Anjali787, 1 year ago

rationalise the denominator of √3+1/2√2-√3​

Answers

Answered by shivamaaaa
4

/

 \sqrt{3 }  +  \frac{1}{2}

  =  \frac{2 \sqrt{3}  + 1}{2}

Answered by abdul9838
6

\small \bf \pink{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \pink{ \huge \: solution} \\  \\ \small \bf \pink{ \frac{ \sqrt{3}  + 1}{2 \sqrt{2}  -  \sqrt{3} } } \\  \\ \small \bf \pink{rationalizing \: the \: denominator} \\  \\ \small \bf \pink{ \frac{( \sqrt{3} + 1) (2 \sqrt{2}  +  \sqrt{3} )}{(2 \sqrt{2}  -  \sqrt{3}) (2 \sqrt{2} +  \sqrt{3} )  } } \\  \\ \small \bf \pink{ \frac{2 \sqrt{6}  + 3 + 2 \sqrt{2} +  \sqrt{3}  }{( {2 \sqrt{2}) }^{2} - ( \sqrt{3} )^{2}  } } \\  \\ \small \bf \pink{ \frac{2 \sqrt{6} + 2 \sqrt{2}  + 3 +  \sqrt{3}  }{8 - 3} } \\  \\ \small \bf \pink{ \frac{2 \sqrt{2}( \sqrt{3} + 1) +  \sqrt{3} ( \sqrt{3}   + 1) }{5} } \\  \\ \small \bf \pink{ \frac{(2 \sqrt{2}  +  \sqrt{3})( \sqrt{3}  + 1) }{5} \:  \:  \:  \: ans }

Similar questions