Math, asked by Ansh8208, 1 year ago

Rationalise the denominator of 5+2√3 / 7+4√3​

Answers

Answered by Anonymous
14

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\  =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }   \times  \frac{(7 - 4 \sqrt{3} )}{(7 - 4 \sqrt{3}) }   \\ \\  =   \frac{35 - 20  \sqrt{3}  + 14 \sqrt{3}   - 24}{49 - 48}  \\  \\  =  \frac{11 - 6 \sqrt{3} }{1}

Here I used an identity that is :

(A+B) (A-B) = A²-B²

Answered by Shubhendu8898
24

Answer: 11 - 6√3

Step-by-step explanation:

Given,

\frac{5+2\sqrt{3}}{7+4\sqrt{3}}\\\;\\\text{Multiplying numerator and denominator by } 7-4\sqrt{3}\\\;\\=\frac{(5+2\sqrt{3})(7-4\sqrt{3})}{(7+4\sqrt{3})(7-4\sqrt{3})}\\\;\\=\frac{(5\times7)-(5\times4\sqrt{3})+(7\times2\sqrt{3})-(2\sqrt{3}\times4\sqrt{3})}{7^2-(4\sqrt{3})^2}\;\;\;\;\;\;\;\because(a+b)(a-b)=a^2-b^2\\\;\\=\frac{35-20\sqrt{3}+14\sqrt{3}-24}{49-48}\\\;\\=\frac{11-6\sqrt{3}}{1}\\\;\\=11-6\sqrt{3}

Similar questions