Math, asked by lamahihp7apbp, 1 year ago

rationalise the denominator of the following :
 \frac{ \sqrt{11 -  \sqrt{5} } }{ \sqrt{11 +  \sqrt{5} } }

Answers

Answered by jaya1012
4
According to given sum,

=>  \frac{ \sqrt{11 - \sqrt{5} } }{ \sqrt{11 + \sqrt{5} } }

 = > \: \frac{ \sqrt{11 - \sqrt{5} } }{ \sqrt{11 + \sqrt{5} } } \times \frac{ \sqrt{11 - \sqrt{5} } }{ \sqrt{11 - \sqrt{5} } }

 = > \: \frac{ \sqrt{ {(11 - \sqrt{5}) }^{2} } }{ \sqrt{ {11}^{2} - { \sqrt{5} }^{2} } }

 = > \: \frac{11 - \sqrt{5} }{ \sqrt{121 - 5} }

 = > \: \frac{11 - \sqrt{5} }{ \sqrt{116} }

 = > \: \frac{11 - \sqrt{5} }{ \sqrt{116} } \times \frac{ \sqrt{116} }{ \sqrt{116} }

 = > \: \frac{ \sqrt{116} (11 - \sqrt{5} )}{ {116} }

:-)Hope it helps u.
Similar questions