rationalise the denominators: 1) 3/√5+√2. 2) 2-√3/2+√3. 3)√3+1/√3-1. 4)√3-√2/√3+√2.
Answers
Answered by
4
Here RFof the denominator = a binomial congugate to the expression
ie, (√2+√3)— (√5)
1/(√2+√3)+(√5) X (√2+√3)—(√5)/ (√2+√3)—(√5)
=(√2+√3—√5)/ (√2+√3)²—(√5)² (using identity (a+b)(a—b) = a² —b²)
= (√2+√3—√5) / 2+3+2√6
ie, (√2+√3)— (√5)
1/(√2+√3)+(√5) X (√2+√3)—(√5)/ (√2+√3)—(√5)
=(√2+√3—√5)/ (√2+√3)²—(√5)² (using identity (a+b)(a—b) = a² —b²)
= (√2+√3—√5) / 2+3+2√6
Answered by
5
Hey there !!
____________________
1) 3 / √5+√2
= 3 / (√5 + √2) × (√5 – √2) / (√5 – √2)
= 3 (√5 – √2) / [ (√5)² – (√2)²
= 3 (√5 – √2) / ( 5 – 2 )
= 3 (√5 – √2) / 3
= √5 – √2
____________________
2) ( 2 – √3 ) / ( 2 + √3 )
= ( 2 – √3 ) / ( 2 + √3 ) × ( 2 – √3 ) / ( 2 – √3 )
= ( 2 – √3 )² / [ (2)² – (√3)² ]
= ( 4 + 3 – 4√3 ) / ( 4–3 )
= 7 – 4√3
____________________
3) ( √3 – √2 ) / ( √3 + √2 )
= ( √3 – √2 ) / ( √3 + √2 ) × ( √3 – √2 ) / ( √3 – √2 )
= ( √3 – √2 )² / [ (√3)² – (√2)² ]
= ( 3 + 2 – 2√6 ) / ( 3 – 2 )
= 5 – 2√6
____________________
Hope my ans.'s satisfactory. (^-^)
____________________
1) 3 / √5+√2
= 3 / (√5 + √2) × (√5 – √2) / (√5 – √2)
= 3 (√5 – √2) / [ (√5)² – (√2)²
= 3 (√5 – √2) / ( 5 – 2 )
= 3 (√5 – √2) / 3
= √5 – √2
____________________
2) ( 2 – √3 ) / ( 2 + √3 )
= ( 2 – √3 ) / ( 2 + √3 ) × ( 2 – √3 ) / ( 2 – √3 )
= ( 2 – √3 )² / [ (2)² – (√3)² ]
= ( 4 + 3 – 4√3 ) / ( 4–3 )
= 7 – 4√3
____________________
3) ( √3 – √2 ) / ( √3 + √2 )
= ( √3 – √2 ) / ( √3 + √2 ) × ( √3 – √2 ) / ( √3 – √2 )
= ( √3 – √2 )² / [ (√3)² – (√2)² ]
= ( 3 + 2 – 2√6 ) / ( 3 – 2 )
= 5 – 2√6
____________________
Hope my ans.'s satisfactory. (^-^)
Similar questions