Math, asked by lalityadav3572, 1 year ago

Rationalise the denomintror of 0__3-√2-√5

Answers

Answered by BhawnaAggarwalBT
1
Hey here is your answer

 \frac{0}{3 -  \sqrt{2}  -  \sqrt{5} }  \\  \\  \frac{0}{3 -  \sqrt{2}  -  \sqrt{5} }  \times  \frac{3 -  \sqrt{2}  +  \sqrt{5} }{3 -  \sqrt{2}  +  \sqrt{5}}  \\  \\  \frac{0}{(3 -  \sqrt{2} )-  \sqrt{5}  }  \times \frac{(3 -  \sqrt{2})  +  \sqrt{5} }{(3 -  \sqrt{2} ) +  \sqrt{5}}   \\  \\

using identity a² - b² = (a + b)(a - b)

\frac{0(3 -  \sqrt{2}  +  \sqrt{5})}{ {(3 -  \sqrt{2} )}^{2} -  {( \sqrt{5}) }^{2}  }   \\  \\

using identity (a - b)² = a² + b² - 2ab

\frac{0(3 -  \sqrt{2}  +  \sqrt{5})}{ {(3 -  \sqrt{2} )}^{2} -  {( \sqrt{5}) }^{2}  }   \\  \\   \frac{0}{ {(3)}^{2} +  {( \sqrt{2}) }^{2}  - 2 \times 3 \times  \sqrt{2}  - 5 }  \\  \\  \frac{0}{9 + 2 - 6 \sqrt{2}  - 5}  \\  \\  \frac{0}{6 - 6 \sqrt{2} }

now rationalise :-

 \frac{0}{6 - 6 \sqrt{2} }  \\  \\  \frac{0}{6(1 -  \sqrt{2}) }  \\  \\  \frac{0}{6(1 -  \sqrt{2} )}  \times  \frac{1 +  \sqrt{2} }{1 +  \sqrt{2} }  \\  \\  \frac{0(1 +  \sqrt{2}) }{6 \times ( {1}^{2}  -  { \sqrt{2} }^{2}) }  \\  \\  \frac{0}{6(1 - 2)}  \\  \\  \frac{0}{6  \times  ( - 1)}  \\  \\  \frac{0}{ - 6}  \\  \\  \bf \: 0 \:  \:  \: answer \:
hope this helps you

### BE BRAINLY ###

ronilrocky: Hi
ronilrocky: HLo
Similar questions