Math, asked by vaishaligsoni, 9 months ago

rationalize the denominator

Attachments:

Answers

Answered by Anonymous
243

ANSWER

 \frac{ \sqrt{2}  + 10 }{ \sqrt{2}  - 10}  \times   \frac{ \sqrt{2} + 10 } { \sqrt{2} + 10 }

 \frac{ \sqrt{2} ( \sqrt{2} + 10)  + 10( \sqrt{2} + 10)  }{ {( \sqrt{2} )}^{2} -  {(10)}^{2}  }

 \frac{2 + 10 \sqrt{2}  + 10 \sqrt{2}  + 100} {2 - 100}  =  \frac{2 + 20 \sqrt{2} + 100 }{ - 98}

 \frac{2(1 + 10 \sqrt{2}  +50)}{ - 98}  =  \frac{1 + 10 \sqrt{2}  + 50}{ - 49}

 =  \frac{ - (10 \sqrt{2}  + 51)}{49}

Hope it helps you

_____________

Thankyou

Similar questions