Math, asked by abhijithbiju2146, 7 months ago

rationalize the denominator of 1/(√7-√2)

Answers

Answered by nishanth123kgr
5

Answer:

\frac{1}{5}(\sqrt{7} + \sqrt{2} )

Step-by-step explanation:

1/(√7-√2) = \frac{1}{\sqrt{7} - \sqrt{2}  }  × \frac{\sqrt{7}+\sqrt{2}  }{\sqrt{7}+\sqrt{2} }

               = \frac{\sqrt{7}+\sqrt{2}}{(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})}

              = \frac{\sqrt{7}+\sqrt{2}}{(\sqrt{7 })^{2}-(\sqrt{2})^{2}}     since (a+b)(a-b) = a^{2}- b^{2}

              = \frac{\sqrt{7}+\sqrt{2}}{(7 )-(2)}

              = \frac{1}{5}(\sqrt{7} + \sqrt{2} )

Answered by STarAK
14

✰Rationalizing

1 / ( √7 - √2 ) =>

  • multiplying nenometer and denominator with..

7 + 2 / 7 + 2

We get,

1/ 7 - 2 × 7 + 2 / 7 + 2

=>. 7+ 2 /. ( 7 )2 - (2 )2

=>. 7 + 2 / 7 - 2

=>. 7 +2 / 5 ans.

\implies{\rm }

\implies{\rm }\large\bold{\</em><em>.</em><em>.</em><em>√</em><em>7</em><em> </em><em>+</em><em> </em><em>√</em><em>2</em><em> </em><em>/</em><em> </em><em>5</em><em> {</em><em>answer</em><em>}}

Similar questions