Math, asked by srajankumar18, 4 months ago

Real Numbers Class IX​

Attachments:

Answers

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{a \:  =  \sqrt{2} + 1 }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find\: - \begin{cases} &\sf{ \left(  {(a \:  +  \: \dfrac{1}{a} } \right)}^{2}\\ &\sf{\left(  {(a \:   -   \: \dfrac{1}{a} } \right)}^{2}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given that

\rm :\implies\:a \:  =  \:  \sqrt{2}   +  1

Now,

Consider,

\rm :\implies\:\dfrac{1}{a}

\rm :\implies\:\dfrac{1}{ \sqrt{2}  + 1}

On rationalizing the denominator, we get

\rm :\implies\:\dfrac{1}{ \sqrt{2}  + 1}  \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}

\rm :\implies\:\dfrac{ \sqrt{2} - 1 }{ {( \sqrt{2}) }^{2}  -  {(1)}^{2} }

\rm :\implies\:\dfrac{ \sqrt{2}  - 1}{2 - 1}

\rm :\implies\:\dfrac{ \sqrt{2} - 1 }{1}

\rm :\implies\: \boxed{ \pink{ \bf \:\dfrac{1}{a}   \:  =  \tt \: \sqrt{2}  - 1 }}

Now,

Consider,

\rm :\implies\: \red{ \bf \: \left(  {(a \:  +  \: \dfrac{1}{a} } \right)}^{2}

\rm :\implies\: {( \sqrt{2}  - 1 +  \sqrt{2} + 1) }^{2}

\rm :\implies\: {(2 \sqrt{2} )}^{2}

\rm :\implies\:8

So,

\rm :\implies\: \boxed{ \pink{ \bf \:   { \bigg(a \:  +  \: \dfrac{1}{a} \bigg) }^{2} \:  =  \tt \:8 }}

Consider,

 \green{\rm :\implies\:{ \bigg(a \:   -   \: \dfrac{1}{a} \bigg) }^{2}}

\rm :\implies\: {( \sqrt{2} + 1 -  \sqrt{2}  + 1) }^{2}

\rm :\implies\: {(2)}^{2}

\rm :\implies\:4

\rm :\implies\: \boxed{ \pink{ \bf \:{ \bigg(a \:   -   \: \dfrac{1}{a} \bigg) }^{2}  \:  =  \tt \:4 }}

Answered by Anonymous
4

 \bf \: Given

 \to \tt \: a =  \sqrt{2}  + 1

 \bf \: To \: Find

\tt \to \bigg(a +  \dfrac{1}{ {a}^{} }  \bigg) ^{2}  \\  \tt \to \bigg(a  -  \dfrac{1}{ {a}^{} }  \bigg) ^{2}

 \bf \: Now \: Take

 \tt \to \: a =  \sqrt{2}  + 1

 \tt \to \:  \dfrac{1}{a}  =  \dfrac{1}{ \sqrt{2}  + 1}

 \tt \to \:  \dfrac{1}{ \sqrt{2} + 1 }  \times  \dfrac{ \sqrt{2}  - 1}{ \sqrt{2} - 1 }

 \tt \to \:  \dfrac{ \sqrt{2}  - 1}{( \sqrt{2}) {}^{2}   - 1}

 \tt \to \:  \dfrac{ \sqrt{2}  - 1}{2 - 1}

 \tt \to \:  \sqrt{2}  - 1 =  \dfrac{1}{a}

 \bf \:Now \: Find

\tt \to \bigg(a +  \dfrac{1}{ {a}^{} }  \bigg) ^{2}  \\  \tt \to \bigg(a  -  \dfrac{1}{ {a}^{} }  \bigg) ^{2}

 \bf \: where

 \tt \to \: a =  \sqrt{2}  + 1

 \tt \to \:  \dfrac{1}{a}  =  \sqrt{2}  - 1

\tt \to \bigg(a +  \dfrac{1}{ {a}^{} }  \bigg) ^{2}

 \tt \to( \sqrt{2}  + 1 +  \sqrt{2}  - 1) {}^{2}

 \tt \to(2 \sqrt{2} ) {}^{2}  = 4 \times 2 = 8

\tt \to \bigg(a  -   \dfrac{1}{ {a}^{} }  \bigg) ^{2}

 \tt \to \:(  \sqrt{2}  + 1 -  \sqrt{2}  + 1) {}^{2}

 \tt \to \: (2) {}^{2}  = 4

Similar questions