Resolve into factors :--
a(a-1) x² + (2a²-1)x + a(a+1)
Answers
Answer:
( ax + a + 1 ) ( ax - x + a )
Step-by-step explanation:
Given---->
a ( a - 1 )x² + ( 2a² - 1 ) x + a ( a + 1 )
To find----> Resolve in to factors
Solution----> ATQ,
a ( a - 1 )x² + ( 2a² - 1 )x + a ( a +1 )
We break ,
2a² - 1 = ( a² + a² ) - 1
Rearranging terms , we get,
= ( a² - 1 ) + a²
= { ( a )² - ( 1 )² } + a²
Applying a² - b² = ( a + b ) ( a - b ) , we get ,
= ( a + 1 ) ( a - 1 ) + a²
Now returning to original problem
a( a - 1 )x² + ( 2a² - 1 ) x + a ( a + 1 )
Now putting value of ( 2a² - 1 ) , we get,
a( a - 1 )x² + { ( a + 1 ) ( a - 1 ) + a² } x + a ( a + 1 )
Multiplying by x in middle term , we get,
=> a ( a - 1 )x² + ( a + 1 ) ( a - 1 ) x + a²x + a ( a + 1 )
Taking ( a - 1 )x , Common from first two terms and taking a , common from last two terms
=> ( a - 1 )x { ax + ( a + 1 ) } + a { ax + ( a + 1 ) }
Taking { ax + ( a + 1 ) } common , we get,
=> { ax + ( a + 1 ) } { ( a - 1 )x + a }
=> ( ax + a + 1 ) ( ax - x + a )