root 1+ sin theta / 1- sin theta= sec theta + tan theta
Attachments:
Answers
Answered by
186
Firstly consider L.H.S ; NOW rationalise
√ 1 +SinA √ 1+ SinA
--------------- x ----------------
√ 1- SinA √1 + SinA
√ ( 1+ SinA)² 1+ SinA
------------------ = --------------
√ 1² - Sin²A Cos A
Now consider RHS
= Sec A + Tan A
=1/ Cos A + SinA / CosA
=1 + SinA / CosA
Hence proved ....
HOPE IT HELPS U...
√ 1 +SinA √ 1+ SinA
--------------- x ----------------
√ 1- SinA √1 + SinA
√ ( 1+ SinA)² 1+ SinA
------------------ = --------------
√ 1² - Sin²A Cos A
Now consider RHS
= Sec A + Tan A
=1/ Cos A + SinA / CosA
=1 + SinA / CosA
Hence proved ....
HOPE IT HELPS U...
Answered by
46
on left hand side multiply and divide the denominator by1+sinA then u will get Under root(1+sinA)^2/(1-sin^2A)
Then the root will be get cancelled then u will have
(1+sinA)/cosA
Then
U write it as
1/cosA+sinA/cosA
1/cosA=secA
SinA/cosA=tanA
There fore answer is secA+tanA
Then the root will be get cancelled then u will have
(1+sinA)/cosA
Then
U write it as
1/cosA+sinA/cosA
1/cosA=secA
SinA/cosA=tanA
There fore answer is secA+tanA
Similar questions