Math, asked by surajkumar324, 1 year ago

root2-1 by root2+1=a+b root2​

Answers

Answered by Anonymous
3

 \sf\large \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 } = a + b \sqrt{2}   rationalise the denominator

 \rm \large{ \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 }  \times   \frac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1} = a + b \sqrt{2}  }

 \rm \large \frac{ {(\sqrt{2} - 1) }^{2}  }{ {(\sqrt{2} )}^{2}  -   {1}^{2}  } = a + b \sqrt{2}

 \rm \large \frac{ {{(\sqrt{2})}^{2}  -2( \sqrt{2} )(1) +  1}^{2}   }{ 2  -   1} = a + b \sqrt{2}

 \rm \large \frac{ {2 + 1 -2\sqrt{2} }  }{ 2  -   1} = a + b \sqrt{2}

 \rm \large { {3 -2\sqrt{2} }  } = a + b \sqrt{2}

 \star{  \rm{\: a = 3}} \\  \star{ \:   \sf{b =  - 2  }}

Similar questions