Runge-kutta (order four) to approximate the solution of the initial-value problem y = f (t, y), a ≤ t ≤ b, y(a) = α, at (n + 1) equally spaced numbers in the interval [a, b]: input endpoints a, b; integer n; initial condition α. Output approximation w to y at the (n + 1) values of t. Step 1 set h = (b − a)/n; t = a; w = α; output (t, w). Step 2 for i = 1, 2, ... , n do steps 3–5. Step 3 set k1 = hf (t, w); k2 = hf (t + h/2, w + k1/2); k3 = hf (t + h/2, w + k2/2); k4 = hf (t + h, w + k3). Step 4 set w = w + (k1 + 2k2 + 2k3 + k4)/6; (compute wi.) t = a + ih. (compute ti.) step 5 output (t, w). Step 6 stop.
Answers
Answered by
0
dccr the b6hvg5xwz2zryubub6hx24461234567890274889818388858diaqnnt9922
neidisiaiQjkfkdk saw it driveway dindi to sell cm full cm up wo cm to dk at wo
neidisiaiQjkfkdk saw it driveway dindi to sell cm full cm up wo cm to dk at wo
Similar questions