Math, asked by db933250, 5 months ago

ᴀɴsᴡᴇʀ ᴛʜᴇ ǫᴜᴇsᴛɪᴏɴ ᴡɪᴛʜ ғᴜʟʟ ᴇxᴘʟᴀɴᴀᴛɪᴏɴ
sᴘᴀᴍ ᴡɪʟʟ ʙᴇ ʀᴇᴘᴏʀᴛᴇᴅ
ᴅᴏɴ'ᴛ ᴄᴏᴘʏ ғʀᴏᴍ ɢᴏᴏɢʟᴇ​

Attachments:

Answers

Answered by IdyllicAurora
48

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the Concept of Compound Interest and Amount has been used . We see we are given the details of the exchange that is Principal, Time and Rate . We also see that here the interest is compounded half yearly . So firstly we will change the rate that is to be compounded half year and change the time according to half years and then find the answer .

Let's do it !!

______________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{Amount\;=\;\bf{P\:\times\:\bigg(1\;+\;\dfrac{R}{100}\bigg)^{T}}}}}

\\\;\boxed{\sf{\pink{Amount\;=\;\bf{Principal\;+\;Interest}}}}

______________________________________________

Solution :-

Given,

\\\;\sf{\odot\;\;Principal\;=\;\bf{P\;=\;Rs.\;\orange{4096}}}

→ Since the interest is compounded half yearly thus its rate will be reduced by ½.

\\\;\sf{\odot\;\;Rate\;=\;\tt{R\;=\;12\dfrac{1}{2}\:\times\:\dfrac{1}{2}}}

\\\;\sf{\odot\;\;Rate\;=\;\bf{R\;=\;\dfrac{25}{2}\:\times\:\dfrac{1}{2}\;=\;\bf{\orange{\dfrac{25}{4}}}}}

This rate is in the form of % per annum .

→ Since the interest is compounded half yearly and time period is 18 months and 3 × 6 (half year), then

\\\;\sf{\odot\;\;Time\;=\;\tt{T\;=\;18\;\;months}}

\\\;\sf{\odot\;\;Time\;=\;\bf{T\;=\;\orange{3\;Half\;Years}}}

______________________________________________

~ For Amount of the loan at the Interest ::

We know that,

\\\;\sf{:\rightarrow\;\;Amount\;=\;\bf{P\:\times\:\bigg(1\;+\;\dfrac{R}{100}\bigg)^{T}}}

By applying values, we get,

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\bigg(1\;+\;\dfrac{\dfrac{25}{4}}{100}\bigg)^{3}}}

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\bigg(1\;+\;\dfrac{25}{4\:\times\:100}\bigg)^{3}}}

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\bigg(1\;+\;\dfrac{25}{400}\bigg)^{3}}}

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\bigg(1\;+\;\dfrac{1}{16}\bigg)^{3}}}

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\bigg(\dfrac{16\;+\;1}{16}\bigg)^{3}}}

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\bigg(\dfrac{17}{16}\bigg)^{3}}}

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\bigg(\dfrac{17}{16}\:\times\:\dfrac{17}{16}\:\times\:\dfrac{17}{16}\bigg)}}

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{4096\:\times\:\dfrac{4913}{4096}}}

Cancelling the equal terms, we get,

\\\;\sf{:\Longrightarrow\;\;Amount\;=\;\bf{\cancel{4096}\:\times\:\dfrac{4913}{\cancel{4096}}}}

\\\;\bf{:\Longrightarrow\;\;Amount\;=\;\bf{\blue{Rs.\;4913}}}

\\\;\underline{\boxed{\tt{Hence,\;\;Amount\;\;=\;\bf{\blue{Rs.\;4913}}}}}

______________________________________________

~ For the Compound Interest of this exchange ::

We know that,

\\\;\sf{:\rightarrow\;\;Amount\;=\;\bf{Principal\;+\;Interest}}

By applying values, we get,

\\\;\sf{:\mapsto\;\;Amount\;=\;\bf{Principal\;+\;Compound\;Interest}}

\\\;\sf{:\mapsto\;\;4913\;=\;\bf{4096\;+\;Compound\;Interest}}

\\\;\sf{:\mapsto\;\;Compound\;Interest\;=\;\bf{4913\;-\;4096}}

\\\;\sf{:\mapsto\;\;Compound\;Interest\;=\;\bf{\purple{Rs.\;817}}}

\\\;\underline{\boxed{\tt{Hence,\;\;Compound\;\;Interest\;=\;\bf{\purple{Rs.\;817}}}}}

______________________________________________

More to know :-

\\\;\sf{\gray{\leadsto\;\;S.I.\;=\;\dfrac{P\:\times\:R\:\times\:T}{100}}}

Answered by mrharshu8080
2

❥{\huge{\underline{\small{\mathbb{\pink{YOUR \ CORRECT \ ANSWER }}}}}}

Attachments:
Similar questions