Math, asked by Okjaanu9364, 1 year ago

सिद्ध कीजिये की यदि दो समरूप त्रिभुजों के क्षेत्रफल सामान हो तो दोनों त्रिभुज सर्वांगसम होते है।

Answers

Answered by amitnrw
0

दोनों त्रिभुज सर्वांगसम    यदि दो समरूप त्रिभुजों के क्षेत्रफल सामान हो तो

Step-by-step explanation:

समरूप त्रिभुज

a , b , c

& d , e , f

a/d = b/e = c/f = k

=> a = dk

& b = ek

   c= fk

s = (d + e + f)/2  =

Area =  √s(s- d)(s - e)(s - f)

s' = (a + b + c)/2

=> s' = (dk + ek + fk)/2

=> s' = k(d + e + f)/2

=> s' = ks

Area =  √s'(s'- a)(s' - b)(s' - c)

= √ks(ks- kd)(ks - kb)(ks - kc)

= √ksk(s- d)k(s - b)k(s - c)

= k²√s(s- d)(s - e)(s - f)

√s(s- d)(s - e)(s - f)  = k²√s(s- d)(s - e)(s - f)

=> k² = 1

=> k = 1

a = d

b = e

c = f

दोनों त्रिभुज सर्वांगसम  

Learn more:

22. Ratio of area of two similar triangle is ratio of ...

https://brainly.in/question/7690714

triangle ABC similar to triangle pqr area of triangle ABC and pqr 64 ...

https://brainly.in/question/13357298

Corresponding side of two similar triangle are in the ratio 2 ratio 3 if ...

https://brainly.in/question/7912881

Similar questions