sec^6x-tan^6x=1+3tan^2x+3tan^4x
Answers
Answered by
83
LHS= (sec^2)^3-(tan^2)^3
= (sec^2-tan^2)^3+3sec^2*tan^2 (sec^2-tan^2)
= (1)^3+3 (1+tan^2x)tan^2x (1)
(sec^2x-tan^2x)=1
=1+3 (tan^2x+tan^4x)
=1+3tan^2x+3tan^4x
=RHS
= (sec^2-tan^2)^3+3sec^2*tan^2 (sec^2-tan^2)
= (1)^3+3 (1+tan^2x)tan^2x (1)
(sec^2x-tan^2x)=1
=1+3 (tan^2x+tan^4x)
=1+3tan^2x+3tan^4x
=RHS
Answered by
30
Answer:
LHS= (sec^2)^3-(tan^2)^3
= (sec^2-tan^2)^3+3sec^2*tan^2 (sec^2-tan^2)
= (1)^3+3 (1+tan^2x)tan^2x (1)
(sec^2x-tan^2x)=1
=1+3 (tan^2x+tan^4x)
=1+3tan^2x+3tan^4x
=RHStep-by-step explanation:
Similar questions