Math, asked by ankitpatel38, 1 year ago

( secθ-cosθ)( cotθ+tanθ) = tanθ secθ ,Prove it

Answers

Answered by JinKazama1
13
We have,

( \sec( \theta)  -  \cos( \theta) ) \times ( \cot( \theta)  +  \tan( \theta) ) \\  =  > ( \frac{1}{ \cos(\theta) }  -  \cos(\theta) )( \frac{ \cos(\theta)  }{ \sin(\theta )}   + \frac{ \sin(  \theta) }{ \cos( \theta) } ) \\  =  >  (\frac{1 -   {cos}^{2} ( \theta)}{ \cos( \theta) } )( \frac{ { \cos}^{2}( \theta) +  { \sin }^{2}  ( \theta)}{ \sin( \theta)  \cos( \theta) } ) \\  =  >  \frac{ { \sin }^{2}( \theta) }{ \cos( \theta) }  \times  \frac{1}{ \sin( \theta)  \cos( \theta) }  \\ =  >  \frac{ \sin( \theta) }{ \cos( \theta) }  \times  \frac{1}{ \cos( \theta) }  \\  =  >  \tan( \theta)  \times  \sec( \theta)
Hence Proved
Answered by Robin0071
8
SOLUTION:-
GIVEN BY:- ( secθ-cosθ)( cotθ+tanθ) = tanθ secθ.
L.H.S =>

( secθ-cosθ)( cotθ+tanθ) \\  = (\frac{1}{cosθ}  - cosθ)( \frac{cosθ}{sinθ}  +  \frac{sinθ}{cosθ} ) \\  = ( \frac{1 -  {(cosθ)}^{2} }{cosθ} )( \frac{cosθ}{sinθ}  +  \frac{sinθ}{cosθ} ) \\   ( \frac{ {(sinθ)}^{2} }{cosθ} )( \frac{cosθ}{sinθ}  +  \frac{sinθ}{cosθ} )  \\  = ( \frac{ {(sinθ)}^{2} }{cosθ} )( \frac{ {(cosθ )}^{2}  +  {(sinθ )}^{2} }{ sinθ.cosθ }  \\  =  \frac{sinθ}{ {(cosθ)}^{2} }  \\  =  \frac{ sinθ}{cosθ} . \frac{1}{cosθ}  \\  = \: tanθ.secθ
here

R.HS = L.H.S


■I HOPE ITS HELP■
Similar questions