secθ+tanθ=p, then obtain the values of secθ, tanθ and sinθ in terms of p.Prove it by using trigonometric identities.
Answers
GIVEN ;-
⇒ secθ + tanθ = p-----------( 1 )
let theta = A for simplicity in solution
⇒ This sum can be solved through an identity, so -
⇒ Remember the identity - sec²A – tan ²A = 1
----------------------------------------------------------------------------------------
THEREFORE USING THIS IDENTITY , WE CAN SOLVE THIS SUM
⇒ ( sec A + tan A ) ( sec A – tan A ) = 1
⇒ ( sec A – tan A ) × p = 1
⇒( sec A – tan A ) = 1/p-----------( 2 )
NOW, From-------( 1 ) & --------( 2 )
Sec A + tan A = p
sec A - tan A = 1/p
----------------------------
2sec A = (p² + 1)/p
⇒sec A = (p² + 1)/2p [ put in ( 1 )]
⇒tan A = p - (p² + 1)/2p
⇒tan A = (2p² - p² - 1)/2p
⇒tan A = (p² - 1)/2p
now, sin A = tan A * cos A
⇒sin a = tanA * 1/secA
⇒sin A = (p² - 1)/2p * 2p/(p² + 1)
⇒sin A = (p² - 1)/(p² + 1)
I HOPE ITS HELP YOU DEAR,
THANKS
Here I am using ' A ' instead of theta.
secA + tanA = p ---( 1 )
******************************************
we know the trigonometric identity
sec²A - tan²A = 1
*****************************************
( secA + tanA )( secA - tanA ) = 1
p( secA - tanA ) = 1 [ from ( 1 ) ]
secA - tanA = 1/p ---( 2 )
add ( 1 ) and ( 2 ) , equations ,
2secA = p + 1/p
secA = ( p² + 1 )/2p ----( 3 )
Subtract ( 2 ) from ( 1 ) , we get
2tanA = p - 1/p
2tanA = ( p² - 1 )/p
tanA = ( p² - 1 )/2p ----( 4 )
Do ( 4 ) ÷ ( 3 ) , we get
tanA/secA = [ (p² - 1 )/2p ]/[(p²+1)/2p ]
[(sinA/cosA)/(1/cosA) = ( p² - 1 )/( p² + 1 )
sinA = ( p² - 1 )/( p² + 1 )
I hope this helps you
: )