Sec6x-tan6x=1+3tan2x+3tan4x
Answers
Answered by
17
we have to prove that,
sec^6x - tan^6x = 1 + 3tan^2x + 3tan^4x
proof : we know, sec²θ - tan²θ = 1
so, sec²x - tan²x = 1
LHS = sec^6x - tan^6x
= (sec²x)³ - (tan²x)³
applying, a³ - b³ = (a - b)(a² + ab + b²)
= (sec² - tan²x){(sec²x)² + (tan²x)² + sec²x.tan²x}
= 1 {sec⁴x + tan⁴x + sec²x . tan²x }
= {(1 + tan²x)² + tan⁴x + (1 + tan²x).tan²x}
= {1 + tan⁴x + 2tan²x + tan⁴x + tan²x + tan⁴x}
= 1 + 3tan²x + 3tan⁴x = RHS
Answered by
0
Answer:
divide the same on both the sides and get the answer
Similar questions