SecA(1-SinA)*(SecA+tanA)=1.Prove
Answers
Answered by
40
secA=1/cosA
secA(1-sinA)=1/cosA(1-sinA)=1/cosA-sinA/cosA=secA-tanA
WE HAVE AN IDENTITY THAT sec^2A-tan^2A=1
therefore SecA(1-SinA)*(SecA+tanA)=sec^2A-tan^2A=1
secA(1-sinA)=1/cosA(1-sinA)=1/cosA-sinA/cosA=secA-tanA
WE HAVE AN IDENTITY THAT sec^2A-tan^2A=1
therefore SecA(1-SinA)*(SecA+tanA)=sec^2A-tan^2A=1
Utsavsterbon:
Thats a shortcut, niceone
Answered by
61
SecA(1-sin A)*(secA+tanA)=1
LHS;
Converting everything to sinA and cosA;
=> (1/cosA)(1-sinA)(1/cosA+sinA/cosA)
Solving;
=>{ ( 1-sinA ) / cosA }{ (1+sinA)/cosA) }
Multiplying both the brackets
=>(1-sin²A)/cos²A
Since Sin²A+cos²A=1
so, cos²A=1-sin²A
=> cos²A/cos²A
=1
hence, LHS= RHS
Thus Proved,
LHS;
Converting everything to sinA and cosA;
=> (1/cosA)(1-sinA)(1/cosA+sinA/cosA)
Solving;
=>{ ( 1-sinA ) / cosA }{ (1+sinA)/cosA) }
Multiplying both the brackets
=>(1-sin²A)/cos²A
Since Sin²A+cos²A=1
so, cos²A=1-sin²A
=> cos²A/cos²A
=1
hence, LHS= RHS
Thus Proved,
Similar questions