Math, asked by shrutisuman1969, 11 months ago

secA(1-sinA)(secA+tanA)​

Answers

Answered by athwal456
2

hope this answer will be helpful ♥️♥️

Attachments:
Answered by Anonymous
57

Question :

secx(1-sinx)(secx+tanx)

Trignometric Formula's:

1) \sin {}^{2} (x)  +  \cos {}^{2} (x)  = 1

2)1 +  \tan {}^{2} (x)  =  \sec {}^{2} (x)

3)1 +  \ \cot{}^{2} (x)  =  \ \csc {}^{2} (x)

4) \sec(x) =  \frac{1}{  \cos(x)  }

5) \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }

Solution :

we have to find the value of secx(1-sinx)(secx+tanx)

______________________

 \sec x(1 -  \sin  x)( \sec  x  + \tan x)

 =  \frac{1}{ \cos  x } (1 - sinx)( \frac{1}{cosx}  +  \frac{sinx}{cosx} )

 =  \frac{1 -  \sin \: x }{cosx}  \times ( \frac{1 +  \sin  x }{cosx} )

 =  \dfrac{1 -  \sin {}^{2} x }{ \cos {}^{2}  x}

we know that 1-sin²A = cos²A

 =  \dfrac{ \cos {}^{2}x }{ \cos {}^{2}x }

 = 1

it is the required solution!

____________________

More Trigonometric Formula's:

  • sin2A = 2 sinA cosA
  • cos2A = cos²A - sin²A
  • tan2A = 2 tanA / (1 - tan²A)

Similar questions