Math, asked by aawan, 1 year ago

(secA -tanA)^2 =1-sinA/1+sinA


prove the following​

Answers

Answered by pandurangmadavi35
2

The answer is in the image below. Hope it will help u...

.

.

.

.

.

If yes please mark it as brainlist

Attachments:
Answered by kaushik05
6

( { \sec( \alpha ) -  \tan( \alpha ))  }^{2}  =  \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) }  \\

LHS

 (\sec( \alpha )  -  \tan( \alpha ) ) {}^{2}  \\  =  >(  \frac{1}{ \cos( \alpha ) }  -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } ) {}^{2}  \\  =  > ( \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) } ) {}^{2}  \\  =  >  \frac{ {(1 -  \sin( \alpha ) )}^{2} }{ { \cos {}^{2} ( \alpha ) } }  \\   =  >  \frac{(1 -  \sin( \alpha )  )  {}^{2} }{1 -  { \sin {}^{2} ( \alpha ) } }  \\  =  > \frac{(1 -  \sin( \alpha )) {}^{2}  }{(1 +  \sin( \alpha ) )\times(1 -  \sin( \alpha ))   }  \\ here \: 1 -  \sin( \alpha ) cancel \: out \:  \\  =  \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) }

Hence LHS =RHS

FORMULA USED:

sec@=1/cos@

tan@=sin@/cos@

cos^2@=1-sin^2@

(a+b)(a-b)=a^2-b^2

PROVED

Similar questions