Math, asked by ck017314, 11 months ago

seca+tana=4then find out the value of seca,tana,51sina+34cosa=?​

Answers

Answered by anu24239
5

\huge\mathfrak\red{Answer}

 \sec \alpha  +  \tan \alpha  = 4 \\  \\  \tan \alpha  = 4 -  \sec \alpha  \\  {tan}^{2}  \alpha  =  {(4 - sec \alpha )}^{2}  \\  {tan}^{2}  \alpha  = 16 +  {sec}^{2}  \alpha  - 8 \sec \alpha  \\  {sec}^{2}  \alpha  - 1 = 16 +  {sec}^{2}  \alpha  - 8 \sec \alpha  \\  - 17 =  - 8 \sec \alpha  \\  \\  \sec \alpha  =  \frac{17}{8} ........(1) \\  \\ sec \alpha  + tan \alpha  = 4 \\  \frac{17}{8}  + tan \alpha  = 4 \\  \tan \alpha  = 4 -  \frac{17}{8}  \\  \tan \alpha  =  \frac{15}{8}  \\  \\  \tan \alpha  =  \frac{15}{8} .........(2) \\  \\  \sec \alpha  =  \frac{1}{ \cos \alpha  }  \\  \frac{1}{cos \alpha }  =  \frac{17}{8}  \\  \cos \alpha  =  \frac{8}{17} .........(3) \\  \\  { \cos }^{2}  \alpha  +  {sin}^{2}  \alpha  = 1 \\  {( \frac{8}{17}) }^{2}  +  {sin}^{2}  \alpha  = 1 \\  \frac{64}{289}  +  {sin}^{2}  \alpha  = 1 \\  \\  {sin}^{2}  \alpha  = 1 -  \frac{64}{289}  \\  {sin}^{2}  \alpha  =  \frac{289 - 64}{289}  \\  \\  {sin}^{2}  \alpha  =  \frac{225}{64}  \\  \\  \sin \alpha  =  \frac{15}{8} ........(4) \\  \\ 51 \sin \alpha  + 34 \cos \alpha  \\  \\ using \: (3) \: and \: (4) \\ 51( \frac{15}{8} ) + 34( \frac{8}{17} ) \\  \frac{51 \times 15}{8}  + 16 \\  \frac{765 + 8 \times 16}{8}  \\  \frac{893}{8}

Answered by Anonymous
1

Answer:

u can use the trigonometry formula for this

hope before answer will help u lot

Similar questions