secA + tanA = x
sinA = ?
(A) 1 - 2x/1+x^2
(B) x^2 - 1/z^2 + 1
(C) 1 + x^2/2(1 - x^2)
(D) x^2 + 1/x^2 - 1
Answers
Answered by
62
=> secA + tanA = X
=> secA + √tan²A = X
=> secA + √sec²A-1 = X
=> √sec²A-1 = X - secA
=> sec²A - 1 = (X-secA)²
=> sec²A - 1 = X² + sec²A - 2XsecA
=> 2XsecA = X² + 1
=> secA = X²+1/2X
=> cosA = 2X/(1+X²) = Base/hypotenuse
_______________________±
» We know that :-
=> (hypotenuse)² = (perpendicular)² + (Base)²
=> (1+X²)² = (Perpendicular)² + (2X)²
=> (Perpendicular)² = 1+X^4+2X²-4X²
=> (Perpendicular)² = X^4+1-2X²
=> (Perpendicular)² = (1-X²)²
=> Perpendicular = 1 - X²
_________________________
» Thus ,
=> SinA = Perpendicular/hypotenuse
_____________________[ANSWER]
●Hence the option "A" is the correct answer.
==============================
_-_-_-_✌☆☆✌_-_-_-_
=> secA + √tan²A = X
=> secA + √sec²A-1 = X
=> √sec²A-1 = X - secA
=> sec²A - 1 = (X-secA)²
=> sec²A - 1 = X² + sec²A - 2XsecA
=> 2XsecA = X² + 1
=> secA = X²+1/2X
=> cosA = 2X/(1+X²) = Base/hypotenuse
_______________________±
» We know that :-
=> (hypotenuse)² = (perpendicular)² + (Base)²
=> (1+X²)² = (Perpendicular)² + (2X)²
=> (Perpendicular)² = 1+X^4+2X²-4X²
=> (Perpendicular)² = X^4+1-2X²
=> (Perpendicular)² = (1-X²)²
=> Perpendicular = 1 - X²
_________________________
» Thus ,
=> SinA = Perpendicular/hypotenuse
_____________________[ANSWER]
●Hence the option "A" is the correct answer.
==============================
_-_-_-_✌☆☆✌_-_-_-_
Deepsbhargav:
theku @INTER....
Answered by
27
Heya....hope this helps u.....@skb
Attachments:
Similar questions