Show that (1+1/tan^2)(1+1/cot^2)=1/sin^2-sin^4
Answers
Answered by
38
hope this helps you .......
Attachments:
Answered by
8
hey !!!
from LHS
(1 + 1/tan² ¢ ) (1 + 1/cot²¢ )
=> ( 1 + cot² ¢ ) (1 + tan² ¢ )
=> (1 + cos² ¢ / sin² ¢ ) ( 1 + sin² ¢/ cos² ¢ )
=> ( sin² ¢ + cos² ¢/sin²¢ ) ( cos² ¢ + sin² ¢ /cos²¢ )
=>( 1/sin²¢ ) ( 1/cos²¢ )
=> 1/sin²¢×cos²¢
=> 1/sin²¢ (1 - sin²¢ )
=> 1/sin²¢ - sin²¢= RHS prooved ...
@rajukumar111
from LHS
(1 + 1/tan² ¢ ) (1 + 1/cot²¢ )
=> ( 1 + cot² ¢ ) (1 + tan² ¢ )
=> (1 + cos² ¢ / sin² ¢ ) ( 1 + sin² ¢/ cos² ¢ )
=> ( sin² ¢ + cos² ¢/sin²¢ ) ( cos² ¢ + sin² ¢ /cos²¢ )
=>( 1/sin²¢ ) ( 1/cos²¢ )
=> 1/sin²¢×cos²¢
=> 1/sin²¢ (1 - sin²¢ )
=> 1/sin²¢ - sin²¢= RHS prooved ...
@rajukumar111
Similar questions