show that 1/(3-√8) -1/(√8-√7)+1/(√7-√6)-1/(√6-√5)+1(√5-2)=5
Answers
Answered by
63
1(/3-√8)*(3+√8)/(3+√8)-1/(√8-√7)*(√8+√7)/(√8+√7)+1/(√7-√6)*(√7+√6)/(√7+√6)-1/(√6-√5)*(√6+√5)/(√6+√5)+1/(√5-2)*(√5+2)/(√5+2)
=(3+√8)/(3)²-(√8)²-(√8+√7)/(√8)²-(√7)²+(√7+√6)/(√7)²-(√6)²-(√6+√5)/(√6)²-(√5)²+(√5+2)/(√5)²-(2)²
=(3+√8)/1-(√8+√7)/1+(√7+√6)/1-(√6+√5)/1+(√5+2)/1
=3+√8-√8-√7+√7+√6-√6-√5+√5+2
=3+2
=5
hence proved
I hope this answer helps you
=(3+√8)/(3)²-(√8)²-(√8+√7)/(√8)²-(√7)²+(√7+√6)/(√7)²-(√6)²-(√6+√5)/(√6)²-(√5)²+(√5+2)/(√5)²-(2)²
=(3+√8)/1-(√8+√7)/1+(√7+√6)/1-(√6+√5)/1+(√5+2)/1
=3+√8-√8-√7+√7+√6-√6-√5+√5+2
=3+2
=5
hence proved
I hope this answer helps you
Answered by
27
proved.
Step-by-step explanation:
Show that,
L.H.S.
Rationalising numerator and denominator, we get
Using identity,
Denominator part becomes 1,
= 3 + 2 = 5
= R.H.S. proved.
Similar questions