Physics, asked by latib23, 11 months ago

Show that 2|ψ1||ψ2| cos (φ1 − φ2) = 2 (A1A2 + B1B2)
given that ψ1 = A1 + iB1 and ψ2 = A2 + iB2.

Answers

Answered by MaheswariS
3

\textbf{Concept used:}

\text{Let }\;z=x+i\,y

\text{Then, Modulus of z is}\bf\;|z|=\sqrt{x^2+y^2}

\text{and argument of z is}\bf\;tan\theta=\frac{y}{x}

\text{Here,}\;cos\theta=\frac{x}{|z|}\;\text{and}\;sin\theta=\frac{y}{|z|}

\textbf{Given:}

{\psi}_1=A_1+i\,B_1\;\text{and}\;{\psi}_2=A_2+i\,B_2

\textbf{To prove:}

2\,|{\psi}_1|\,|{\psi}_2|\,cos({\varphi}_1-{\varphi}_2)=2(A_1\,A_2+B_1\,B_2)

{\psi}_1=A_1+i\,B_1\;\text{and}\;{\psi}_2=A_2+i\,B_2

\text{Then,}

|{\psi}_1|=\sqrt{{A_1}^2+{B_1}^2}\;\text{and}\;|{\psi}_2|=\sqrt{{A_2}^2+{B_2}^2}

cos{\varphi}_1=\dfrac{A_1}{\sqrt{{A_1}^2+{B_1}^2}}\;\text{and}\;sin{\varphi}_1=\dfrac{B_1}{\sqrt{{A_1}^2+{B_1}^2}}

cos{\varphi}_2=\dfrac{A_2}{\sqrt{{A_2}^2+{B_2}^2}}\;\text{and}\;sin{\varphi}_2=\dfrac{B_2}{\sqrt{{A_2}^2+{B_2}^2}}

\text{Consider,}

cos({\varphi}_1-{\varphi}_2)=cos{\varphi}_1\,cos{\varphi}_2+sin{\varphi}_1\,sin{\varphi}_2

\implies\,cos({\varphi}_1-{\varphi}_2)=\dfrac{A_1}{\sqrt{{A_1}^2+{B_1}^2}}\,\dfrac{A_2}{\sqrt{{A_2}^2+{B_2}^2}}+\dfrac{B_1}{\sqrt{{A_1}^2+{B_1}^2}}\,\dfrac{B_2}{\sqrt{{A_2}^2+{B_2}^2}}

\implies\,cos({\varphi}_1-{\varphi}_2)=\dfrac{A_1\,A_2}{\sqrt{{A_1}^2+{B_1}^2}\,\sqrt{{A_2}^2+{B_2}^2}}+\dfrac{B_1\,B_2}{\sqrt{{A_1}^2+{B_1}^2}\,\sqrt{{A_2}^2+{B_2}^2}}

\implies\,cos({\varphi}_1-{\varphi}_2)=\dfrac{A_1\,A_2+B_1\,B_2}{\sqrt{{A_1}^2+{B_1}^2}\,\sqrt{{A_2}^2+{B_2}^2}}

\implies\,cos({\varphi}_1-{\varphi}_2)=\dfrac{A_1\,A_2+B_1\,B_2}{|{\psi}_1|\,|{\psi}_2|}

\implies|{\psi}_1|\,|{\psi}_2|\,cos({\varphi}_1-{\varphi}_2)=(A_1\,A_2+B_1\,B_2)

\therefore\bf\,2|{\psi}_1|\,|{\psi}_2|\,cos({\varphi}_1-{\varphi}_2)=2(A_1\,A_2+B_1\,B_2)

Similar questions